Browsing by Author "Campilho, Raul D.S.G. Duarte Salgueiral Gomes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024 -T3 Plates Using Hybrid Bonding/Riveting(Sciendo, 2024) Merah, Abdelkrim; Houari, Amin; Madani, Kouider; Belhouari, Mohamed; Amroune, Salah; Chellil, Ahmed; Yahia, Cherif Zineelabidine; Campilho, Raul D.S.G. Duarte Salgueiral GomesSince the implementation of repair processes by composite patch bonding, this process has consistently demonstrated high performance across various industrial sectors, especially in the fields of aeronautics, aerospace and civil engineering. Consequently, there are situations in which the riveting process becomes the sole solution, particularly when the structure is subjected to severe mechanical or thermo-mechanical stresses, since adhesives have low mechanical strength after aging. Each method has its own set of advantages and disadvantages. The current trend is to combine these two processes to minimise their drawbacks as much as possible. The objective of this work is to present an experimental study on the repair of an aluminium plate AL2024-T3 with a central circular notch using a patch of different nature (metal or composite), under tensile loading conditions. The repair composite considered is a carbon/epoxide. The results of the tensile tests showed that the repair by the combination of the two processes improves the mechanical strength of the damaged structure. A comparison of the results of the experimental curves obtained on riveted, bonded and hybrid assemblies has been taken into consideration.Item Predicting damage in notched functionally graded materials plates through extended finite element method based on computational simulations(Gruppo Italiano Frattura, 2024) Siguerdjidjene, Hakim; Houari, Amin; Madani, Kouider; Amroune, Salah; Mokhtari, Mohamed; Mohamad, Barhm; Ahmed, Chellil; Merah, Abdelkrim; Campilho, Raul D.S.G. Duarte Salgueiral GomesPresently, Functionally Graded Materials (FGMs) are extensively utilised in several industrial sectors, and the modelling of their mechanical behaviour is consistently advancing. Most studies investigate the impact of layers on the mechanical characteristics, resulting in a discontinuity in the material. In the present study, the extended Finite Element Method (XFEM) technique is used to analyse the damage in a Metal/Ceramic plate (FGM-Al/SiC) with a circular central notch. The plate is subjected to a uniaxial tensile force. The maximum stress criterion was employed for fracture initiation and the energy criterion for its propagation and evolution. The FGM (Al/SiC) structure is graded based on its thickness using a modified power law. The plastic characteristics of the structure were estimated using the Tamura-Tomota-Ozawa (TTO) model in a user-defined field variables (USDFLD) subroutine. Validation of the numerical model in the form of a stress-strain curve with the findings of the experimental tests was established following a mesh sensitivity investigation and demonstrated good convergence. The influence of the notch dimensions and gradation exponent on the structural response and damage development was also explored. Additionally, force-displacement curves were employed to display the data, highlighting the fracture propagation pattern within the FGM structure.
