Browsing by Author "Khemili, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Isolation and characterization of halophilic archaea able to produce biosurfactants(2012) Kebbouche-Gana, Salima; Gana, M. L.; Bouanane, N. A.; Khemili, S.; Fazouane Naimi, F.; Penninckx, M.; Hacene, H.Halotolerants microorganisms able to live in saline environments, offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40mNm-1 and two of them exhibited high emulsion-stabilising capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contains sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactants producers designed strain A21 and strain D21 were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg2+and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15% to 20%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this a first report of biosurfactant production at such a high salt concentrationItem Modelling and bioinformatics analysis of the dimeric structure of house dust mite allergens from families 5 and 21 : Der f 5 could dimerize as der p 5(2012) Khemili, S.; Marc Kwasigroch, J.; Hamadouche, T.; Gilis, D.Allergy represents an increasing thread to public health in both developed and emerging countries and the dust mites Dermatophagoides pteronyssinus (Der p), Blomia tropicalis (Blo t), Dermatophagoides farinae (Der f), Lepidoglyphus destructor (Lep d) and Suidasia medanensis (Sui m) strongly contribute to this problem. Their allergens are classified in several families among which families 5 and 21 which are the subject of this work. Indeed, their biological function as well as the mechanism or epitopes by which they are contributing to the allergic response remain unknown and their tridimensional structures have not been resolved experimentally except for Blo t 5 and Der p 5. Blo t 5 is a monomeric three helical bundle, whereas Der p 5 shows a three helical bundle with a kinked N-terminal helix that assembles in an entangled dimeric structure with a large hydrophobic cavity. This cavity could be involved in the binding of hydrophobic ligands, which in turn could be responsible for the shift of the immune response from tolerance to allergic inflammation. We used molecular modelling approaches to bring out if other house dust mite allergens of families 5 and 21 (Der f 5, Sui m 5, Lep d 5, Der p 21 and Der f 21) could dimerize and form a large cavity in the same way as Der p 5. Monomeric models were first performed with MODELLER using the experimental structures of Der p 5 and Blo t 5 as templates. The ClusPro server processed the selected monomers in order to assess their capacity to form dimeric structures with a positive result for Der p 5 and Der f 5 only. The other allergens (Blo t 5, Sui m 5, Lep d 5, Der p 21 and Der f 21) did not present such a propensity. Moreover, we identified mutations that should destabilize and/or prevent the formation of the Der p 5 dimeric structure. The production of these mutated proteins could help us to understand the role of the dimerization process in the allergic response induced by Der p 5, and if Der p 5 and Der f 5 behave similarly
