Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
2 results
Search Results
Item Preparation and biological characterization of cellulose graft copolymers(Elsevier, 2010) Dahou, Wassila; Ghemati, Djamila; Oudia, Atika; Aliouche, DjamelAcrylic acid (AA) and acrylonitrile (AN) were graft polymerized onto cellulose fluff pulp using cericammonium nitrate as initiator. The resulting copolymers were saponified with dilute sodium hydroxide and characterized by FT-IR, SEM and TGA. The potential value of the modified cellulose was assessed through measurements of absorbency properties. A fibre-hydrogel was prepared by an addition of a bifunctional monomer, ethyleneglycol dimethacrylate (EDMA) used for grafting. In second approach, biocide cellulose carbamate was prepared by impregnating the fibres in aqueous thiourea solution and subsequent grafting with acrylonitrile. Antimicrobial activity of the treated cellulose sample was studied against Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis according to AATCC test method 100–1999. The results show that the treated fibre gives higher antimicrobial activity. The strong antimicrobial functions achieved on modified fibres, proved that the synthesized biomaterial was effective, very simple and practical to the textile finishing industryItem Biotreatment on cellulose fluff pulp : quaternary ammonium salts finish and grafting with β -cyclodextrin(2009) Ghemati, Djamila; Aliouche, Djamel; Oudia, Atika; Lamouri, SaadFor its potential performances to be expanded, cellulose needs to be processed in different ways. Therefore, an object of the present work was to provide a chemical modification of cellulose through: a specific finish with two quaternary ammonium salts (namely Aliquat 336 and Aliquat 1529, respectively). Chemical grafting of β -cyclodextrin derivative ( β -CD) onto fibers followed by the inclusion of benzoic acid in the grafted CD cavities as a probe chemical. Physicochemical properties and performances of the untreated and treated fibers have been determined with infrared spectra, microscopy, swelling measurements, antimicrobial finishing tests, and dye adsorption. Our results show that cellulose fibers can be efficiently modified with no significant changes in its structural and surface properties; the treated fibers show an attractive behavior in swelling, dye adsorption and antibacterial activity
