Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
2 results
Search Results
Item Effect of repair patch nature on J-integral reduction in notched plates(Emerald Publishing, 2024) Houari, Amin; Kouider, Madani; Polat, Alper; Amroune, Salah; Mohamad, Barhm Abdullah; Chellil, Ahmed; Campilho, RaulPurpose: The purpose of this research is to evaluate the effectiveness of different repair patch materials in reducing the stresses at the crack tip of a 2024-T3 aluminum plate. This involves a numerical analysis using the finite element method (FEM) to estimate the reduction in the J-integral value, with the goal of identifying how various parameters related to the patch materials, adhesive properties and loading conditions influence the structural integrity of the repaired plate. Design/methodology/approach: The methodology of this research involves conducting a numerical analysis using the FEM to estimate the reduction in the J-integral value at the crack tip of a 2024-T3 aluminum plate. Three types of patches – metal, composite and functionally graded material (FGM) – were examined under tensile loading conditions, and Adekit-A140 adhesive was used to bond these repair patches to the aluminum plate. Findings: The analysis considered various parameters, including crack length, the nature of fibers in the composite material, the gradation exponent for FGM patches and the nature of the face in contact with the adhesive for the FGM patch. Additionally, stress analysis was conducted, examining the J-integral values for the plate, shear stress in the adhesive layer and peel stress in the composite patch. The findings highlight that modifying the nature of the repair patch used can significantly enhance the structural integrity of the repaired plate. Originality/value: The study analyzed J-integral values, shear stress in the adhesive and peel stress in the composite patch. Various parameters, including crack length, fiber type, gradation exponent and adhesive contact face nature, were considered. Results demonstrate that the J-integral value can be significantly reduced by altering the repair patch type, highlighting the effectiveness of customized patch materials in enhancing structural integrity.Item Experimental and numerical study of the effect of the presence of a geometric discontinuity of variable shape on the tensile strength of an epoxy polymer(Sciendo, 2023) Saada, Khalissa; Amroune, Salah; Zaoui, Moussa; Houari, Amin; Madani, Kouider; Hachaichi, AminaThe presence of geometric discontinuity in a material reduces considerably its resistance to mechanical stresses, therefore reducing the service life of materials. The analysis of structural behaviour in the presence of geometric discontinuities is important to ensure the proper use, especially if it is regarding a material of weak mechanical properties such as a polymer. The objective of the present work is to analyse the effect of the notch presence of variable geometric shapes on the tensile strength of epoxy-type polymer specimens. A series of tensile tests were carried out on standardised specimens, taking into account the presence or absence of a notch. Each series of tests contains five specimens. Two notch shapes were considered: circular (hole) and elliptical. The experimental results in terms of stress-strain clearly show that the presence of notches reduces considerably the resistance of the material, where the maximum stress for the undamaged specimen was 41.22 MPa and the lowest stress for the elliptical-notched specimen was 11.21 MPa. A numerical analysis by the extended finite element method (XFEM) was undertaken on the same geometric models; in addition, the results in stress-strain form were validated with the experimental results. A remarkable improvement was obtained (generally an error within 0.06%) for strain, maximum stress, Young's modulus and elongation values. An exponential decrease was noted in the stress, strain, and Young's modulus in the presence of a notch in the material
