Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
7 results
Search Results
Item A comprehensive numerical study on melting performance in a storage cavity with partial metal foam integration: Design and economic assessment(Elsevier, 2024) Cheradi, Hanane; Haddad, Zoubida; Iachachene, Farida; Mansouri, Kacem; Arıcı, MüslümDespite remarkable technological progress aimed at improving thermal performance of storage systems, designing cost-effective thermal storage solutions still remains a challenge. Consequently, to address this gap, the current study provides a detailed numerical analysis of the melting performance within a storage cavity with partial metal foam integration, considering both design and economic aspects. Five distinct designs were considered to provide a comprehensive assessment of the melting process including non-porous and porous designs. Various factors such as foam position, foam shape and foam filling ratio were examined under different criteria. The results revealed that designs employing kite-shaped, triangular-shaped, square-shaped, and trapezoidal-shaped foam under optimal location resulted in melting time reduction of 74.8 %, 67.0 %, 50.9 %, and 42.8 %, respectively, in comparison to the non-porous design. The findings highlight the kit-shaped foam as the optimal foam shape, with a notable 7.8 % difference in melting times between designs with kite and triangular foams, and an 8.1 % disparity between designs with square and trapezoidal foams. From an economic assessment, it was found that the kit-shaped foam filling design, with a 1/3 filling ratio, proved to be cost-effective when the unit price ratio of the metal foam to PCM fell within the range of 4 to 12. Interestingly, for ratios below 4, the same design, with a 1/2 filling ratio, emerged as an economical solution. This study contributes to the field by providing quantitative insights into the design and economic viability of metal foam integrated thermal storage systems.Item Investigation of the novelty of latent functionally thermal fluids as alternative to nanofluids in natural convective flows(Nature, 2020) Haddad, Zoubida; Iachachene, Farida; Abu-Nada, Eiyad; Ioan, PopThis paper presents a detailed comparison between the latent functionally thermal fluids (LFTFs) and nanofluids in terms of heat transfer enhancement. The problem used to carry the comparison is natural convection in a differentially heated cavity where LFTFs and nanofluids are considered the working fluids. The nanofluid mixture consists of Al2O3 nanoparticles and water, whereas the LFTF mixture consists of a suspension of nanoencapsulated phase change material (NEPCMs) in water. The thermophysical properties of the LFTFs are derived from available experimental data in literature. The NEPCMs consist of n-nonadecane as PCM and poly(styrene-co-methacrylic acid) as shell material for the encapsulation. Finite volume method is used to solve the governing equations of the LFTFs and the nanofluid. The computations covered a wide range of Rayleigh number, 104 ≤ Ra ≤ 107, and nanoparticle volume fraction ranging between 0 and 1.69%. It was found that the LFTFs give substantial heat transfer enhancement compared to nanofluids, where the maximum heat transfer enhancement of 13% was observed over nanofluids. Though the thermal conductivity of LFTFs was 15 times smaller than that of the base fluid, a significant enhancement in thermal conductivity was observed. This enhancement was attributed to the high latent heat of fusion of the LFTFs which increased the energy transport within the cavity and accordingly the thermal conductivity of the LFTFs.Item Heat transfer prediction of a jet impinging a cylindrical deadlock area(American Society of Mechanical Engineers (ASME), 2014) Halouane, Yacine; Mataoui, Amina; Iachachene, FaridaItem Heat transfer related to a self-sustained oscillating plane jet flowing inside a rectangular cavity(IEEE, 2014) Iachachene, Farida; Matoui, A.; Halouane, YacineItem Turbulent heat transfer for impinging jet flowing inside a cylindrical hot cavity(Serbian Society of Heat Transfer Engineers, 2015) Halouane, Yacine; Mataoui, Amina; Iachachene, FaridaConvective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2·104 to 105 and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu = f(Lf, Re)Item Numerical investigations on heat transfer of self-sustained oscillation of a turbulent jet flow inside a cavity(American Society of Mechanical Engineers (ASME), 2015) Iachachene, Farida; Mataou, Amina; Halouane, YacineItem Turbulent jet impinging a cylindrical hot cavity(Springer, 2014) Halouane, Yacine; Mataoui, Amina; Iachachene, Farida
