Publications Scientifiques

Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Using Machine Learning Algorithms for the Analysis and Modeling of the Rheological Properties of Algerian Crude Oils
    (Taylor and Francis Ltd., 2024) Souas, Farid; Oulebsir, Rafik
    Our research described in this report investigated the rheological behavior of crude oils from the Tin Fouye Tabankort oil field in Southern Algeria, focusing on their viscosity under varying temperatures (10 °C–50 °C). The results show that the oils exhibited non-Newtonian shear-thinning behavior at low shear rates, with the viscosity decreasing as the temperature was increased. At higher shear rates, the Herschel–Bulkley model accurately described the oils’ transition to Newtonian behavior. Machine learning models, including CatBoost, LightGBM, and XGBoost, were trained on the experimental data to predict the viscosity, with CatBoost and XGBoost showing superior performance. We suggest these findings are valuable for improving the efficiency of oil transportation and processing.
  • Item
    Rheological and flow behavior of water-in-oil Pickering emulsions stabilized with organo-hectorite clay
    (Elsevier, 2021) Merad, B.; Bekkour, K.; François, P.; Gareche, M.; Lawniczak, F.
    The rheological and flow behaviors of Pickering emulsions are studied as a function of their water concentration. The studied emulsions are water-in-gasoil inverse emulsions stabilized with organo-hectorite clay. An in-line emulsion preparation was performed and a novel emulsification system was used. The emulsification system was tested and confirmed before performing pipe-flow measurements. A stress-controlled rheometer was used to study the rheological behavior of organoclay stabilized inverse emulsions. It was found that the emulsions exhibited a shear thinning with yield stress non-Newtonian rheological behavior and that the flow curves were well correlated using the Herschel-Bulkley model. Pressure loss and axial velocity measurements were studied to investigate the pipe-flow behavior of the emulsions. Axial velocity of the fluids was measured using an Ultrasonic Pulsed Doppler Velocimeter. It was shown that, up to 50 wt% water mass concentration, an exponential increase of yield stress and viscosity values is noticed, and the phase inversion point is not reached. In the range of the applied flow rates, turbulence took place only in the case of the lowest water cut (0 wt%). The Herschel-Bulkley rheological parameters were used to simulate the pipe-flow behavior of the studied fluids, and showed a satisfactory correlation with the in-line measurements. Furthermore, wall shear stress and velocity profiles were used to study the short-, medium-, and long-term stability of the emulsions. © 2021 Elsevier B.V.
  • Item
    Rheological and flow behavior of water-in-oil Pickering emulsions stabilized with organo-hectorite clay
    (Elsevier, 2021) Boutheina, Merad; Bekkour, Karim; Pierre, François; Gareche, Mourad
    The rheological and flow behaviors of Pickering emulsions are studied as a function of their water concentration. The studied emulsions are water-in-gasoil inverse emulsions stabilized with organo-hectorite clay. An in-line emulsion preparation was performed and a novel emulsification system was used. The emulsification system was tested and confirmed before performing pipe-flow measurements. A stress-controlled rheometer was used to study the rheological behavior of organoclay stabilized inverse emulsions. It was found that the emulsions exhibited a shear thinning with yield stress non-Newtonian rheological behavior and that the flow curves were well correlated using the Herschel-Bulkley model. Pressure loss and axial velocity measurements were studied to investigate the pipe-flow behavior of the emulsions. Axial velocity of the fluids was measured using an Ultrasonic Pulsed Doppler Velocimeter. It was shown that, up to 50 wt% water mass concentration, an exponential increase of yield stress and viscosity values is noticed, and the phase inversion point is not reached. In the range of the applied flow rates, turbulence took place only in the case of the lowest water cut (0 wt%). The Herschel-Bulkley rheological parameters were used to simulate the pipe-flow behavior of the studied fluids, and showed a satisfactory correlation with the in-line measurements. Furthermore, wall shear stress and velocity profiles were used to study the short-, medium-, and long-term stability of the emulsions