Publications Scientifiques

Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10

Browse

Search Results

Now showing 1 - 10 of 37
  • Item
    Adsorption Behavior of Methylene Blue Onto Activated Coconut Shells: Kinetic, Thermodynamic, Mechanism and Regeneration of the Adsorbent
    (SAGE, 2024) Abbas, Moussa; Trari, Mohamed
    Adsorption techniques are widely used to remove some classes of pollutants from waters, especially those which are not easily biodegradable. The removal of Methylene blue (MB), as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. The aim of this study is to eliminate MB by Activated Coconut Shells (ACS) produced at low cost by adsorption in batch mode. The ACS was characterized by the FTIR spectroscopy and point of zero charge (pHpzc: 5.06). Some examined factors were found to have significant impacts on the MB uptake of ACS like the initial dye concentration Co (40-120 mg/L), solution pH (2-8), ACS dose (1-12 g/L), agitation speed (50-500 r/min), particles size (1.0- 1.2 mm) and temperature (298-333 K). The best capacity was found at pH 6 with an adsorbent dose 8 g/L, an agitation speed 200 r/min and a contact time of 60 min. Modeling Kinetics and Isotherms shows that the pseudo-second-order kinetic model with R2 (0.935 -0.998) and Langmuir adsorption isotherm model provide better fitness to the experimental data with the maximum adsorption capacity of 30.30 mg/g at 25°C. The separation factor R L (0.933-0.541) in the concentration range studied (10-120 mg/L) shows a favorable adsorption. The isotherms at different temperatures have been used for the determination of the free energy ΔG ° (198-9.72 kJ/mol); enthalpy ΔH ° (82.082 kJ/mol) and entropy ΔS o (245.689 J/K mol) to predict the nature of MB adsorption process. The positive values of (ΔG o ) and (ΔHo ) indicate a non-spontaneous and endothermic MB adsorption with a chemisorption. The adsorbent elaborated from Coconut Shells was found to efficient and suitable for the removal of MB dye from aqueous solutions, due to its availability, low cost preparation and good uptake capacity.
  • Item
    Removal of Amoxicillin From Wastewater Onto Activated Carbon: Optimization of Analytical Parameters by Response Surface Methodology
    (SAGE Publications Inc., 2024) Abbas, Moussa; Trari, Mohamed
    Antibiotics are widely used in veterinary and human medicine, but these compounds, when released into the aquatic environment, present potential risks to living organisms. In the present study, the activated carbon (AC) used for their removals is characterized by FT-IR spectroscopy, BET analysis and Scanning Electron Microscopy (SEM) to determine the physicochemical characteristics. Response surface methodology (RSM) and Box-Behnken statistical design (BBD) were used to optimize important parameters including pH (2-12), temperature (20-45°C), and AC dose (0.05-0.20 g). The experimental data were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial using multiple regression analysis. The optimal conditions for maximum elimination of Amoxicillin (Amox) are (Dose: 0.124 g, pH 5.03 and 45°C) by applying the desirability function (df). A confirmation experiment was carried out to evaluate the accuracy of the optimization model and maximum removal efficiency (R = 89.999%) was obtained under the optimized conditions. Several error analysis equations were used to measure goodness of fit. Pareto analysis suggests the importance of the relative order of factors: pH > Temperature > AC dose in optimized situations. The equilibrium adsorption data of Amox on Activated Carbone were analyzed by Freundlich, Elovich, Temkin and Langmuir models. The latter gave the best correlation with qmax capacities of 142.85 mg/g (R2 = 0.999) at 25°C is removed from solution. The adsorption process is dominated by chemisorption and the kinetic model obeys a pseudo-second order model (R2 = 0.999).
  • Item
    Direct Drive Permanent Magnet Synchronous Generator: Design, Modeling, and Control for Wind Energy Applications
    (2024) Larabi, Zina; Ghedamsi, Kaci; Aouzellag, Djamal
    The prominent trend in wind turbine technology centers on the adoption of direct-drive permanent magnet synchronous generators (DD-PMSG), a choice driven by their capacity to deliver superior efficiency through the elimination of gearboxes.This paper presents a comprehensive exploration of the design, modeling, and control aspects of a DD-PMSG intended for harnessing wind energy conversion. Initially, the geometrical design of the generator is meticulously carried out, adhering to predefined technical specifications and constraints. Subsequently, an in-depth internal modeling, focusing on the electromagnetic behavior of the designed generator, is executed using finite element analysis (FEA) through the Ansys Maxwell RMXpert software. Finally, the external modeling and control system integration of the designed generator, connected to the grid through power electronic converters, are simulated using the Matlab/Simulink software suite. The resulting findings underscore the efficacy and viability of the proposed generator for wind turbine applications, affirming its potential to enhance wind energy conversion systems
  • Item
    Geological Description and Modeling of Djebel Kerdada in Saharan Atlas–Bou Saada, Algeria
    (Springer Nature, 2023) Belahcene, Brahim; Doghmane, Mohamed Zinelabidine; Eladj, Said
    This paper presents stratigraphic and structural descriptions of Djebel Kerdada in the studied areas of Bou Saada in Algeria. The choice of Djebel Kerdada is due to its geological complexity that can provide more detailed information about the regional geology of the area located at the northern limit of the African plate. This region belongs, geologically, to the Saharan Atlas, which is limited by flexures caused by slow dislocations, transgression, alternations, and regressions. The marginal basin in western Mediterranean Sea was generated by an N-NW subduction of the African and Adriatic plates under the European plate. The geological structures created by the subduction are near the city of Bou Saada, which is located 234 km South-East of Algiers. Based on the results of field investigation internship, it has been confirmed that, due to the compressive tectonic phenomenon caused by the sliding of the African plate under the Euro-Asian plate, many geological structures have a N-E/ S-W direction. Thus, this field study allowed us to limit the different litho-stratigraphic series that appeared in the form of outcrops, fossils, measurement of dips, and all structural faults. Moreover, a static modeling of the geological structure, namely Djebel Kerdada, was established based on the isopath maps of the region and data obtained from the internship. In addition to the limits of the litho-stratigraphic series, the results demonstrated the paths of the hydro-geodynamic forces toward the river of Bou Saada.
  • Item
    Potential of titanium dioxide to remove bromothymol blue (BTB) in aqueous solution by batch mode Adsorption–Kinetic, isotherm and thermodynamic studies
    (Springer, 2023) Abbas, Moussa
    The adsorption is widely used to remove certain classes of pollutants from water, especially those that are hardly biodegradable and dyes represent one of these problematic groups. The removal of bromothymol blue (BTB) from wastewater using TiO2 was studied in batch system. The adsorbent TiO2 has a specific surface area of 400 m2/g, a mean crystallites sizes (5–10 nm), and pHpzc equal to 6.5. TiO2 is stable over the whole pH range and constitutes a good compromise between efficiency and stability (in both acidic and basic media), therefore, the use of other additives is not necessary. Its non-toxicity and low energy required for its activation (E ~ 3 eV) as well as its low cost for most of the applications envisaged make it advantageous. The influence of effective variables such as solution pH (1–10), contact time (0–60 min), initial BTB concentration (5–40 mg/l), adsorbent dose of TiO2 (0.2–2 g/l), and temperature (20–60 °C) on the adsorption efficiency was examined, while the BTB content was determined by UV–Vis spectrophotometry. The optimal pH, adsorbent dose, and contact time for the efficient removal were found to be 10, 0.2 g/l, and 30 min, respectively, and the adsorbent was characterized by the BET analysis and point of zero charge (pHpzc). Among the different kinetic models, the experimental data of the BTB removal are well fitted with the pseudo-first-order kinetic model with a high determination coefficient. The evaluation of the fitness of equilibrium data by various conventional isotherm models, based on the R2 value as criterion, show the successful applicability of the Langmuir model for the interpretation of experimental data with a maximum adsorption capacity (qmax) of 27.02 mg/g at 20 °C and R2 of 0.997. The adsorption isotherms at different temperatures have been used for the determination of the free energy (ΔGo = 2.1808 to—1.0981 kJ/mol), enthalpy (ΔHo = 20.74 kJ/mol), and entropy (ΔSo = 65.58 J/mol/K) indicate that the overall adsorption is spontaneous and endothermic in nature
  • Item
    Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon
    (Elsevier, 2019) Harrache, Zahia; Abbas, Moussa; Aksil, Tounsia; Trarib, Mohamed
    The kinetic and equilibrium parameters of the quantitative adsorption for Indigo Carmine (IC) removed by commercial activated carbon (AC) were studied by UV–visible absorption spectroscopy. AC with a high specific surface area (1250.320 m2/g) was characterized by the Brunauer–Emmett–Teller (BET) method and point of zero charge (pzc). The effect of the initial dye concentration (10–60 mg/L), contact time (0–90 min), pH (1−12), agitation speed (0–600 rpm), adsorbent dose (1–10 g/L) and temperature (298–323 K) were determined to find the optimal conditions for a maximum adsorption. The adsorption mechanism of Indigo Carmine onto AC was studied using the first pseudo order, second pseudo order and Elovich kinetics models. The adsorptions kinetic were found to follow a pseudo second order kinetic model with a determination coefficient (R2) of 0.999. To get an idea on the adsorption mechanism, we applied the Webber-Morris diffusion model. The equilibrium adsorption data for Indigo Carmine on AC were analyzed by the Langmuir, Freundlich, Elovich, Dubinin and Temkin models. The results indicate that the Langmuir model provides the best correlation at 25 °C (qmax = 79.49 mg/g) and Dubinin at 40 °C (qmax = 298.34 mg/g). The adsorption isotherms at different temperatures have been used for the determination of thermodynamic parameters such as free energy (ΔG° = −0.071 to −1.050 kJ/mol), enthalpy (ΔH° = 28.11 kJ/mol), entropy (ΔS° = 0.093 kJ/mol·K) and activation energy (Ea) of 51.06 kJ/mol of adsorption. The negative ΔG° and positive ΔH° values indicate that the overall adsorption is spontaneous and endothermic.
  • Item
    Identification and modeling of a rotary kiln in cement plant based on ANN (MLP)
    (Springer, 2022) Doghmane, Mohamed Zinelabidine; Kidouche, Madjid; Eladj, S.; Ouali, A.
    The objective of this study is to identify and model a rotary cement kiln based on production history data by using an artificial neural network MLP algorithm. The usefulness of this algorithm is that it provides a reliable empirical relation between the inputs parameters (Flow, Temperature, and pressure) and the outputs, which indicate the cement quality. Where, the most critical process in a cement production facility is cooking the mixed raw material in a rotary kiln; its task is to gradually burn and bakes a suitable mixture of input material to produce clinker. Therefore, the rotary kiln is the most important part in a cement factory. From another side, the control of a cement kiln is a complex process due to many factors namely: The Non linearity of the system caused by the chemical reactions, its dynamic and high dimensionality. Therefore, identification, modelling, prediction and simulation of Kiln system is very crucial step in managing and optimizing the cement production. Since the ANN has demonstrated its effectiveness in identifying a large class of complex nonlinear systems, it has been proposed in this case study to model cement Kiln of plant based on Multi-Layer Perceptron (MLP) approach. The MLP algorithm has been trained by using history data of twenty four months, and it has been tested and validated through comparison with production data of the next six months after the training. The obtained results have demonstrated the superiority of the proposed ANN approach over the conventional modelling approaches
  • Item
    Adsorption of methyl green (MG) in aqueous solution by titanium dioxide (TiO2) : kinetics and thermodynamic study
    (Springer, 2021) Abbas, Moussa
    Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. In this respect, the removal of Methyl green (MG) from waste water using TiO2 was studied in batch system. This research was carried out to evaluate the capability of TiO2 toward the water treatment relevant to organic MG at batch conditions. The effects of contact time (0–60 min), initial pH (3–11), agitation speed (100–500 rpm), temperature (25–45 °C), adsorbent dosage (0.02–6 g/L), and MG concentration (50–200 mg/L) on the MG adsorption by TiO2 have been studied. The adsorption kinetics in view of four kinetic models, i.e., the pseudo-first-order Lagergren, pseudo-second-order, intra-particle diffusion and Elovich models, was discussed. The adsorption of MG is well described by the pseudo-second-order equation with the best determination coefficient (R2 = 0.999). The experimental isotherm data were analyzed by different models; the adsorption follows the Langmuir and Temkin models, providing a better fit of the equilibrium data. The batch adsorption experiments were carried out to optimize the physical parameters on the MG removal efficiency, and it has been found that 384.615 mg/g at 25 °C is removed. The positive value of the activation energy (Ea = 14.1813 kJ/mol) indicates the endothermic nature and clearly that the randomness is increased at the solid–solution interface during the MG adsorption onto TiO2, indicating that some structural exchange occurs among the active sites of the adsorbent and the MG species
  • Item
    Application of artificial neural network and kinetic modeling for the prediction of biogas and methane production in anaerobic digestion of several organic wastes
    (Taylor & Francis, 2021) Mougari, Nour El Islam; Largeau, J. F.; Himrane, N.; Hachemi, M.; Tazerout, M.
    In the current study, artificial neural network (ANN) and modified Gompertz equation (MG) were applied to develop integrated based models for the prediction of cumulative biogas and methane yield (CBY and CMY) from anaerobic digestion (AD) of several organic wastes. Volatile solid to total solid ratio (VS/TS), carbon content (C), carbon-to-nitrogen ratio (C/N) and digestion time (DT) were selected as input features for the implementation of ANN approach. Genetic algorithm (GA) was employed in order to optimize the ANN architecture as well as the kinetic parameters of the MG to provide reliable and fast learning for better prediction performance. To evaluate model performances, determination coefficient (R2) and root mean square error (RMSE) were used. Both the approaches performed well in predicting CBY and CMY and showed a good agreement with the experimental data. However, GA-ANN models exhibit smaller deviation and higher predictive accuracy with satisfactory RMSE and R2 of about 0.0045 and 0.9996 for CBY, and 0.0046 and 0.9998 for CMY, compared with GA-MG models. This evinces the effectiveness of the developed approach to forecast CBY and CMY and can be an effective tool for the scale up of anaerobic digestion units and technico-economic studies
  • Item
    Removal in batch mode experiment of Methylene Blue onto trimming Wood of Orange Tree –Equilibrium and Kinetics Studies –
    (ALJEST, 2018) Sifoun, Naima; Abbas, Moussa; Yeddou, A. R.; Nouri, L.; Nadjemi, B.
    In the present study, adsorption of Methylene Blue (MB) from aqueous solution was investigated using an adsorbent derived from Trimming Wood of Orange Tree (WOT). The used adsorbent was analyzed using FT-IR and SEM techniques.The adsorption of MB was carried out using a batch system and the effects of adsorbent dose, initial pH, ionic strength, contact time, initial concentration and temperature on the adsorption capacity of adsorbent were investigated. Kinetic parameters, rate constants, equilibrium adsorption capacities and determination coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of MB onto WOT could be described by the pseudo-second order kinetic. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin models. Adsorption of MB onto WOT followed the Langmuir isotherm for all temperatures studied and the maximum MB uptake was observed as 48.78 mg/g at 293 K. The evaluation of thermodynamics parameters such as the negative Gibbsfree energy and negative enthalpy change indicated respectively the spontaneous and exothermic nature of thesorptionprocess