A comprehensive numerical study on melting performance in a storage cavity with partial metal foam integration: Design and economic assessment
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Despite remarkable technological progress aimed at improving thermal performance of storage systems, designing cost-effective thermal storage solutions still remains a challenge. Consequently, to address this gap, the current study provides a detailed numerical analysis of the melting performance within a storage cavity with partial metal foam integration, considering both design and economic aspects. Five distinct designs were considered to provide a comprehensive assessment of the melting process including non-porous and porous designs. Various factors such as foam position, foam shape and foam filling ratio were examined under different criteria. The results revealed that designs employing kite-shaped, triangular-shaped, square-shaped, and trapezoidal-shaped foam under optimal location resulted in melting time reduction of 74.8 %, 67.0 %, 50.9 %, and 42.8 %, respectively, in comparison to the non-porous design. The findings highlight the kit-shaped foam as the optimal foam shape, with a notable 7.8 % difference in melting times between designs with kite and triangular foams, and an 8.1 % disparity between designs with square and trapezoidal foams. From an economic assessment, it was found that the kit-shaped foam filling design, with a 1/3 filling ratio, proved to be cost-effective when the unit price ratio of the metal foam to PCM fell within the range of 4 to 12. Interestingly, for ratios below 4, the same design, with a 1/2 filling ratio, emerged as an economical solution. This study contributes to the field by providing quantitative insights into the design and economic viability of metal foam integrated thermal storage systems.
Description
Keywords
Economic assessment, Melting process, Metal foam, Numerical simulation, Phase change material, Thermal energy storage
