Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Belkhier, Youcef"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Enhanced power system stabilizer tuning using marine predator algorithm with comparative analysis and real time validation
    (Nature Portfolio, 2024) Hattabi, Intissar; Kheldoun, Aissa; Bradai, Rafik; Khettab, Soufian; Sabo, Aliyu; Belkhier, Youcef; Khosravi, Nima; Oubelaid, Adel
    This study concentrates on the implementation of Marine Predator Algorithm (MPA) scheme for tuning of a power system stabilizer’s (PSS’s) parameters to damp the low-frequency oscillations in a power system. To this, the single machine infinite bus system (SMIB), the Western System Coordinating Council (WSCC) and the New England 10 machine 39-bus power system are utilized for testing and comparing different metaheuristic algorithms using different fitness functions. Optimal PSS parameters of SMIB test system are validated using CU-SLRT Std, a real-time digital simulator. The comparative studies demonstrate that the MPA optimized PSS yields improvements of up to 98.62% in the Particle Swarm Optimization (PSO) at 69.42%, Whale Optimization Algorithm (WOA) at 71.79%, Flower Pollination Algorithm (FPA) at 72.39%, African vulture optimization algorithm (AVOA) at 78.04%, Wild Horse Optimization (WHO) algorithm at 68.57% under various operating scenarios. The superiority of the MPA optimized PSS has been validated using Hardware-in-the-loop implementation for the SMIB test system.
  • No Thumbnail Available
    Item
    A New Fast and Efficient MPPT Algorithm for Partially Shaded PV Systems Using a Hyperbolic Slime Mould Algorithm
    (Wiley-Hindawi, 2024) Belmadani, Hamza; Bradai, Rafik; Kheldoun, Aissa; Mohammed, Karam Khairullah; Mekhilef, Saad; Belkhier, Youcef; Oubelaid, Adel
    The design of new efficient maximum power point tracking (MPPT) techniques has become extremely important due to the rapid expansion of photovoltaic (PV) systems. Because under shading conditions the characteristics of PV devices become multimodal having several power peaks, traditional MPPT techniques provide crappy performance. In turn, metaheuristic algorithms have become massively employed as a typical substitute in maximum power point tracking. In this work, a new optimizer, which was named the hyperbolic slime mould algorithm (HSMA), is designed to be employed as an efficient MPPT algorithm. The hyperbolic tangent function is incorporated into the optimizer framework equations to scale down large perturbations in the tracking stage and boost its convergence trend. Moreover, to provide a strong exploration capability, a new mechanism has been developed in such a way the search process is carried out inside the best two power peak regions along the initial iterations. This region inspection mechanism is the prime hallmark of the designed optimizer in avoiding local power peaks and excessive global search operations. The developed algorithm was examined through diverse complicated partial shading conditions to challenge its global and local search abilities. A comparative analysis was carried out against the well-regarded PSO, GWO, and the standard slime mould algorithm. In overall, the designed optimizer defeated its contenders in all aspects offering higher efficiency, superior robustness, faster convergence, and fewer fluctuations to the operating point. An experimental setup that consists of the DSpace microcontroller and a PV emulator was employed to validate the algorithm overall performance. The recorded outcomes outline that the developed optimizer can achieve a tracking time of 0.6 seconds and 0.86 seconds on average, with 99.85% average efficiency under complex partial shading conditions.

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify