Browsing by Author "Brihmat, Chahira"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Crack identification in plates-type structures using natural frequencies coupled with success-history based adaptive differential evolution algorithm.(EBESCO, 2023) Brihmat, Chahira; Amoura, Nasreddine; Lecheb, Samir; Kebir, Hocine; Ait Chikh, Mohamed Abdessamad; Tablit, BassimaIn this study, a new method for identifying and characterizing straight cracks in plate-like structures is presented. The method combines the finite element method (FEM) using the software Abaqus and the success history-based adaptive differential evolution algorithm (SHADE). The objective of the method is to minimize the mean relative error between the measured experimental frequencies of a plate with an unknown crack identity and the numerical frequencies obtained using the Shade-FEM approach. The crack identity is defined by its length, orientation, and centre coordinates. To validate the effectiveness of the proposed approach, two strategies are applied. In the first strategy, the inverse problem is solved using the natural frequencies of a plate with a known crack identity obtained through modal simulation in Abaqus. In the second strategy, the experimental frequencies of a cracked plate are used. The results of the study demonstrate that the proposed approach achieves promising results with just a population size of 25 and 150 iterations. The outcomes show high accuracy, as indicated by a relative error of the objective function below 0.8%. Overall, the study demonstrates the effectiveness of using the Shade-FEM approach for identifying and characterizing straight cracks in plate-like structures, offering potential applications in various engineering and structural integrity fields.Item Damage crack growth detection of composite pipeline using NDT(Université M'Hamed Bougara Boumerdes : Faculté de Technologie : Département Génie Mécanique, 2021) Brihmat, Chahira; Lecheb, Samir; Chellil, A.; Safi, B.; Kebir, H.; Mechakra, H.; Tablit, B.Item Identification et caractérisation des défauts dans les structures métalliques et composites(Université M'Hamed Bougara Boumerdès : Faculté de Technologie, 2025) Brihmat, Chahira; Lecheb, Samir(Directeur de thèse)De nombreux composants industriels sont soumis à des essais non destructifs pour détecter d'éventuels défauts ou fissures pendant leur utilisation. Cependant, les méthodes courantes telles que les ultrasons, le courant de Foucault ou les rayons X sont coûteuses et n'offrent pas une localisation précise des défauts. Certaines techniques mesurent les réponses statiques, stationnaires ou transitoires ainsi que les fréquences propres, ce qui, lorsqu'exploité numériquement, pourrait permettre une identification plus précise des défauts. Cette problématique relève des problèmes inverses d'identification, particulièrement complexes dans la simulation numérique des structures mécaniques, suscitant des activités de recherche importantes, notamment dans le domaine des éléments de frontière. Dans ce contexte, le présent travail a pour objectif de développer une méthode robuste pour détecter et caractériser des fissures linéaires dans des plaques structurales. Par la suite, nous étendrons cette méthode ou on a fait une hypothèse que la fissure d'une forme elliptique est située dans des plans horizontal et après incliné. En utilisant la combinaison de la méthode des éléments finis (FEM) avec le logiciel Abaqus et l'algorithme d'évolution différentielle adaptative basée sur l'historique des succès (SHADE), nous avons visé à minimiser l'écart entre les fréquences expérimentales et numériques des plaques fissurées. Cette approche a permis d'identifier des paramètres clés tels que la longueur, l'orientation et l'emplacement des fissures. Deux méthodes de validation ont été utilisées en démontrant l'efficacité de notre méthode pour la détection précoce et précise des fissures, renforçant la fiabilité des structures. Dans une phase suivante, nous avons étudié les ondes de Lamb dans des pipelines fissurés par le biais de simulations numériques. Les variations dans les signaux ont été exploitées pour identifier les caractéristiques des fissures, incluant leur profondeur, leur longueur, leur forme et leur orientation. La période de réception des réponses a été analysée en fonction de l'angle d'orientation de la fissure. Cette approche complète permet une compréhension approfondie des défauts structurels, contribuant ainsi à la maintenance et à la durabilité des composants mécaniques. Les résultats obtenus et les performances remarquables en termes de temps de calcul font du couplage entre SHADE et FEM une méthode complémentaire adaptée pour résoudre les problèmes d'identification de fissures
