Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Debiane, M."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Influence de la nature des superplastifiants sur le comportement rhéologiques des pâtes cimentaires: application a la formulation des bétons autoplaçants : Bulletin du Centre d’études et de services technologiques de l’industrie des matériaux de construction
    (2009) Benmounah, A.; Samar, A.; Daoudi, A.; Kheribet, R.; Debiane, M.; Saidi, M.
  • No Thumbnail Available
    Item
    Three-dimensional periodic interfacial gravity waves : analytical and numerical results
    (Elsevier, 2011) Allalou, Nabil; Debiane, M.; Kharif, C.
  • No Thumbnail Available
    Item
    Weakly nonlinear gravity three-dimensional unbounded interfacial waves: perturbation method and variational formulation
    (Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2021) Salmi, Souad; Allalou, N.; Debiane, M.
    Weakly non-linear behaviour of interfacial short-crested waves with current is presented in this paper. Two approaches are used to determine analytical solutions. First, a perturbation method was applied to determine the fifth-order solutions. The advantage of this method is that it allows for the determination of the harmonic resonance condition which is one of the major short-crested waves characteristics. The second method is Whitham’s Lagrangian approach. From this method, we obtained a quadratic dispersion equation. In the linear case, we have shown that there is a critical cur- rent beyond which steady wave solutions cannot exist. This critical current is associated with the emer- gence of instability. For the non-linear case, the critical current increases with the wave amplitude as in the two-dimensional case.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify