Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dehbi, A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    CFD prediction of hydrogen passive autocatalytic recombiner performance under counter-current flow conditions
    (Elsevier, 2020) Halouane, Y.; Dehbi, A.
    Passive Autocatalytic Recombiners (PAR) are frequently used today as safety devices to mitigate hydrogen risk in confined spaces. The present study aims to investigate by CFD tools the PAR performance under potentially adverse counter-current flow conditions. Experimental data obtained from the THAI+ two-compartment facility are used to validate the numerical simulation. Counter-current flow is created by a fan in the larger vessel which produces a downward flow in the second vessel housing the PAR unit. In the simulation, the H2 reaction rate is computed by a correlation given by the PAR manufacturer, and hence no detailed chemistry is necessary. In agreement with test data, the simulation results show that PAR operation is not hindered by the imposed counter-current flow, although the plume exiting the PAR is somewhat compressed compared to that existing in quiescent atmospheres. It is also found that the computed parameters of interest (reaction rates, mean flow velocities, hydrogen PAR inlet/outlet concentration, temperature, pressure) agree well with the measured data. This confirms the usefulness of using CFD simulations to predict PAR behavior in complex flows and geometries

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify