Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Denidni, Tayeb A."

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Design of a compact SWB high gain antenna uysing a fully PEC reflector
    (IEEE, 2021) Belazzoug, Massinissa; Khodja, Khalida; Ksouri, Elhachmi; Rebbah, Rabia; Messaoudene, Idris; Chaouche, Youcef Braham; Hammache, Boualam; Denidni, Tayeb A.
    In this paper, a high-gain and low-profile super wideband (SWB) antenna is presented. The proposed design consists of an asymmetric coplanar waveguide (CPW)-fed modified Y-shaped monopole antenna. A parasitic patch in the ending of bowtieshaped leads to improve the impedance match performance. Therefore, a fully PEC reflector is included in order to enhance the gain by combining the output and the reflected waves in the boresight direction. An impedance bandwidth of 124% is obtained (4.2-18 GHz for VSWR less than 2) with a very compact size of 0.15λ0×0.22λ0×0.012λ0. Directional radiation patterns for the E and H-planes are achieved. The realized gain of the proposed antenna is enhanced by 3-6.5 dBi over the operating band, and the total efficiency is more than 85%. All these features make the proposed antenna a good candidate for RADAR and WLAN communications
  • No Thumbnail Available
    Item
    Design of miniaturized tri-band antenna based on differential evolution algorithm
    (John Wiley and Sons Inc, 2023) Fertas, Fouad; Fertas, Khelil; Denidni, Tayeb A.; Challal, Mouloud
    A novel highly miniaturized triple band structure based on Z-slots-shaped antenna is presented in this letter, with only 0.0015 (Formula presented.) footprint, where (Formula presented.) is the free space wavelength at 1.3 GHz. The proposed design can generates three resonant frequency bands (1.3–1.62 GHz), (2.22–2.59 GHz), and (3.24–3.65 GHz) with −10 dB reflection coefficient, a triple band function is achieved by etching tow connected Z-shaped-slots in the radiating element and the differential evolution algorithm is then used to control the currents path, the prototype of the proposed antenna is printed on a single substrate layer and fed via coplanar waveguide CPW technology. The measured and simulated results are in good agreement, and validate the design principle, the results show that the antenna has a compact size (19.5 × 17.6 mm2), aside from its planar design, simple manufacturing, and low cost to fabricate, this antenna exhibits stable omnidirectional radiation patterns in E plane as well as bidirectional radiation patterns in H plane, making it an ideal device for multiband applications
  • No Thumbnail Available
    Item
    Dual-beam DRA based array for 5G applications
    (IEEE, 2021) Khodja, Khalida; Belazzoug, Massinisssa; Atia, Salim; Messaoudene, Idris; Denidni, Tayeb A.
    In this paper, a dual-beam array antenna based on triangular dielectric resonator (TDR) is presented for Ka-band applications. It consists of 2×1 radiating elements sharing a common ground plane and plated with a thin copper layer at the upper side. The antenna effectively covers two separate bands (28 GHz and 33GHz) with a double-beam radiation at both operating frequencies. This structure has achieved a return loss lower than -20dB with a corresponding gain of more than 8 dBi at 28GHz and 6dBi at 33GHz, and a high radiation efficiency (≥90%) across each band. The radiation pointing angles are centered at ±28° (28GHz) and ±31° (33GHz) with a wide angular width of more than 30°, respectively
  • No Thumbnail Available
    Item
    Novel High Efficiency V-Band Pure TEM D-PRGW Antenna for 5G mmWave Applications
    (John Wiley & Sons, 2024) Khodja, Khalida; Atia, Salim; Messaoudene, Idris; Belazzoug, Massinissa; Merabet, I.; Melouki, Noureddine; Denidni, Tayeb A.
    This paper starts with the proposal of an enhanced version of a planar rectangular slot antenna fed by the quasi-TEM printed ridge gap waveguide (PRGW), attended with a numerical study of a miniaturization procedure showing the limitations of the conventional PRGW-based antennas. Then innovative solution is introducing a new miniaturized pure TEM wide-band slot antenna utilizing double PRGW (D-PRGW) technology; the proposed approach is self-packaged and shows high potential for enhancing antenna performance, particularly in terms of bandwidth, gain, and compactness. This technology is featured with low loss, high performance, and compact size; it consists of surrounding the ridge area with a double layer of electromagnetic band gap (EBG) lattice instead of one to eliminate the surface waves effectively and keep the signal completely confined inside the ridge area with strict minimum rows of EBG. Therefore, a broad impedance matching bandwidth (|S11| ≤ −10 dB) of 33.33% is obtained from 50 to 70 GHz, which covers the unlicensed NR parts (n262; amp; n263) of the V band. Furthermore, the antenna achieves a peak gain of approximately 16 at 65 GHz while the overall efficiency remains above 90% across the entire operating frequency band. The high performance along with the compact size of this novel design makes it a good candidate for 5G wireless communications applications centered around 60 GHz.
  • No Thumbnail Available
    Item
    A novel miniaturized V-shaped monopole antenna for GSM/WiMAX/WLAN applications
    (De Gruyter, 2023) Fertas, Khelil; Fertas, Fouad; Challal, Mouloud; Denidni, Tayeb A.
    This paper presents a novel miniaturized triple band V-shaped antenna (VSA). The miniaturization and the triple-band operation are obtained by performing two V-shaped turns on the metallic strip. The proposed antenna is printed on a single FR4 substrate and fed using the coplanar waveguide (CPW) technique. It operates in three frequency bands, [1.6–1.95 GHz], [2.8–4.4 GHz] and [5.4–5.8 GHz], with stable bidirectional radiation patterns in both E- and H-planes. A prototype of the designed antenna is fabricated and tested where the observed good agreement between simulated and experimental results indicates that the proposed structure, having a reasonably compact size of 0 . 0166 λ 2 0 , is suitable for GSM [1800 MHz], WiMAX [3.4–3.77 GHz] and WLAN [5.725–5.825 GHz] applications
  • No Thumbnail Available
    Item
    Wideband Endfire Antenna Array for 5G mmWave Mobile Terminals
    (Institute of Electrical and Electronics Engineers Inc., 2024) Zidour, Ali; Ayad, Mouloud; Alibakhshikenari, Mohammad; See, Chan Hwang; Lai, Ying-Xin; Ma, Yue.; Guenad, Boumediene; Livreri, Patrizia; Khan, Salahuddin; Pau, Giovanni; Denidni, Tayeb A.
    In this paper, a compact endfire antenna array with low-profile, small clearance, and wideband operation is proposed for millimeter-wave (mmWave) fifth-generation (5G) mobile terminals. The wideband operation is achieved by exciting two identical bow-tie dipoles inserted on both sides of a multilayer substrate fed by an asymmetric open-end stripline to slotline transition. The antenna performance is significantly improved by introducing a set of vertical metallic vias. The proposed antenna element can achieve 29 % from 24.2 GHz to 32.4 GHz with a peak realized gain that varies from 3.5 dBi to 4.5 dBi. A linear 4-element antenna array is arranged and fabricated to verify the proposed antenna beamforming capabilities. The simulated and measured bandwidth achieves a wide range of 34.4 % (24-34 GHz) to support 26, 28, and 30 GHz 5G mmWave bands with an isolation level better than 20 dB and a peak realized gain over the interested bands ranging from 7.56 to 8.14 dBi. The simulated array scanning angle is ± 68° at 28 GHz within 3-dB gain deterioration. Furthermore, the simulated spherical coverage has met the requirements of 3GPP standards which make the proposed antenna array a promising candidate to be integrated within mmWave 5G mobile devices

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify