Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Eldeeb, Hossien B."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    An enhanced aquila-based resource allocation for efficient indoor IoT visible light communication
    (Institute of Electrical and Electronics Engineers Inc., 2023) Yahia, Selma; Meraihi, Yassine; Taleb, Sylia Mekhmoukh; Mirjalili, Seyedali; Ramdane-Cherif, Amar; Ho, Tu Dac; Eldeeb, Hossien B.; Muhaidat, Sami
    Visible light communication (VLC) is a rapidly growing wireless communication technology for the Internet of Things (IoT) that offers high data rates and low latency, making it ideal for massive connectivity. Efficient resource allocation is essential in VLC networks to minimize inter-symbol and cochannel interferences, which can greatly improve network performance and user satisfaction. This paper focuses on an indoor IoT-based VLC system that utilizes photodetectors (PDs) on users' cell phones as receivers, with the goal of maximizing system performances and reducing power consumption by selectively activating some PDs while deactivating others. However, this objective presents a challenge due to the inherent non-convex nature of the multi-objective optimization problem, which cannot be solved by analytical means. To address this, we propose an enhanced Aquila optimization (EAO) scheme that improves upon the Aquila Optimizer (AO) by incorporating a fitness distance balance (FDB) function. We evaluate our proposed EAO in various scenarios under different settings, considering both capacity and fairness metrics. Through simulations, we demonstrate the effectiveness of our approach and its superiority over classical algorithms such as Aquila Optimizer (AO), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) in finding the optimal solution. Our results confirm that the proposed EAO algorithm can efficiently optimize the system capacity and ensure fairness among all users, providing a promising solution for indoor VLC systems
  • No Thumbnail Available
    Item
    Enhancement of vehicular visible light communication using spherical detector and custom lens combinations
    (IEEE, 2023) Yahia, Selma; Meraihi, Yassine; Amar, Ramdane-Cherif; Tu Dac, Ho; Eldeeb, Hossien B.
    Vehicular Visible light communication (VLC) technology has recently attracted much interest from researchers and scientists. This technology enables connectivity between vehicles and infrastructures along the road by using vehicles’ headlights and taillights as wireless transmitters. The reliability of vehicle-to-vehicle (V2V) VLC systems is affected by several factors, such as car mobility, optics system design, and visibility conditions, where the first two have the most impact on the VLC system performance. This paper, therefore, focuses on the relative positions of the cars and the design of the optics, especially on the receiving end, which has been proposed with the use of a polar detector instead of the rectangular detectors commonly used in the literature. We investigate the achievable gain compared to the conventional detector for different vehicle locations, utilizing a professional optical system design and ray tracing approach. Then, to improve the performance, we introduce the utilization of an imaging receiver by integrating the polar detector with different optical commercial lens combinations, such as Fresnel and Aspherical lenses. To further improve the V2V system performance, we propose a novel optical lens combination design by integrating double-convex lens with half-Plano-concave lens, which allows the correction of more optical aberrations, such as chromatic and spherical aberration. Utilizing the non-sequential ray tracing tools, we designed these VLC systems and perform a realistic channel modeling study considering the typical 3D CAD models of vehicles and roads as well as the possibility of horizontal and vertical movement between the vehicles. Based on the channel impulse responses (CIRs) obtained from the ray tracing simulations, we analyzed the performance of V2V VLC systems with all lens combinations at different vehicle positions on the road. We further investigated the impact of different system parameters on the overall V2V system pe...
  • No Thumbnail Available
    Item
    A hybrid whale optimization algorithm with tabu search algorithm for resource allocation in indoor VLC systems
    (Elsevier, 2023) Yahia, Selma; Meraihi, Yassine; Mirjalili, Seyedali; Taleb, Sylia Mekhmoukh; Refas, Souad; Ramdane-Cherif, Amar; Eldeeb, Hossien B.
    This paper proposes a novel hybrid approach (WOATS) based on the hybridization of Whale Optimization Algorithm (WOA) with Tabu search Algorithm (TS) for solving the resource allocation problem for indoor multi-user downlink VLC systems. The efficiency of the proposed WOATS is validated in several scenarios under different settings, considering the throughput and fairness parameters. The results demonstrated that WOATS provides competitive performance in optimizing resource allocation in indoor VLC systems compared to WOA, TS, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Arithmetic Optimization Algorithm (AOA), Moth Flame Optimization (MFO), Grey Wolf Optimizer (GWO), and Sine Cosine Algorithm (SCA).
  • No Thumbnail Available
    Item
    Performance evaluation of vehicular visible light communication based on angle-oriented receiver
    (Elsevier, 2022) Yahia, Selma; Meraihi, Yassine; Ramdane-Cherif, Amar; Gabis, Asma Benmessaoud; Eldeeb, Hossien B.
    Visible Light Communication (VLC) has emerged as a promising technology to complement radio frequency-based vehicular communications. Initial studies in Vehicle-to-Vehicle (V2V) VLC systems assumed that two vehicles follow each other with perfect alignment. Such idealistic assumption is not always maintained during traveling along the road. The lateral shift between the vehicles might strongly impact the system performance. In addition, the effect of the transceiver and system parameters on the performance of V2V-VLC systems should be taken into account. In this paper, we fill this research gap by investigating the performance of V2V-VLC systems under the impact of the lateral shift between the vehicles and transceiver parameters. Then, we introduce the use of the angle-oriented receiver (AOR) in V2V-VLC systems to enhance the system performance in terms of achievable capacity, maximum achievable distance, and packet delivery ratio (PDR). The AOR consists of multiple receiving elements oriented in different directions. We further investigate the impact of the number of AOR elements, both the field-of-view (FoV) and the aperture diameter of each receiving element, and the bandwidth on the system performance. Our results demonstrate that with a carefully chosen system and AOR parameters, a higher system capacity of up to 61 Mb/s is achieved at a communication distance of 50 m
  • No Thumbnail Available
    Item
    Performance study and analysis of MIMO visible light communication-based V2V systems
    (Springer, 2022) Yahia, Selma; Meraihi, Yassine; Refas, Souad; Benmessaoud Gabis, Asma; Ramdane-Cherif, Amar; Eldeeb, Hossien B.
    Vehicular Visible Light Communication (VLC) has recently attracted much interest from researchers and scientists. This technology enables the connectivity between the vehicles and the infrastructures along the road utilizing the Lighting-Emitting-Diodes based vehicle HeadLights (HLs) and TailLights (TLs) as wireless transmitters. This paper investigates the performance of a Vehicle-to-Vehicle VLC system using a Multiple-Input Multiple-Output (MIMO) scheme. Specifically, we establish the MIMO transmission system by using the two HLs of the source vehicle as wireless transmitters and multiple receivers (RXs) installed at the rear of the destination vehicle as wireless receivers. We consider different numbers of RXs, which result in various MIMO configurations, i.e., 2 × 2 , 2 × 3 , and 2 × 4. We conduct a channel modeling study based on the non-sequential ray-tracing capabilities of the OpticStudio software to obtain the optical channel gain, considering the possibility of both horizontal and vertical displacement between vehicles. We then explore the contribution of each RX in the total received power. In addition, we investigate the effect of weather conditions, modulation orders, and artificial light sources on the bit error rate (BER) performance of the considered MIMO configurations. The obtained results demonstrate that deploying the MIMO with higher orders can significantly enhance the system performance, particularly when there is a lateral shift between the two cars. It has been drawn from our results that the required SNR to achieve a BER of 10- 4 reduces by 6 dB when 2 × 4 MIMO configuration is deployed compared to the 2 × 2 MIMO configuration

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
Repository logo COAR Notify