Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Faouci, Soumia"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Clustering et apprentissage profond pour la transcription assistée par ordinateur des documents manuscrits
    (Université M'Hamed Bougara Boumerdès : Faculté des Sciences, 2024) Faouci, Soumia; Gaceb, Djamel(Directeur de thèse)
    La reconnaissance automatique ou semi-automatique de l'écriture manuscrite offre des outils de grande importance pour les sociétés qui souhaitent augmenter leur productivité en numérisant facilement leurs documents manuscrits de tout type (administratifs, manuscrits anciens, chèques, adresses postales, ordonnances, etc.), selon un cadre applicatif varié. Actuellement, l'intelligence artificielle rend cette technologie encore meilleure, rapide et efficace, permettant de réduire les coûts et les délais de lecture optique, de transcription, d'interprétation, de catégorisation et de traitement des documents contenant du texte manuscrit. A l'inverse de l'écriture latine, la nature complexe de l'écriture arabe présente encore des grands challenges et difficultés devant le peu de logiciels OCR existants et qui sont limités à des vocabulaires restreints. L'écriture arabe est ligaturée avec des caractères qui sont souvent collés les uns aux autres et des styles très variables. Dans ce cadre, le projet de cette thèse représente une nouvelle contribution au développement de solutions alternatives aux OCR pour une transcription automatique plus adaptées aux documents manuscrits arabes. Les quatre contributions développées dans ce travail de thèse sont basées sur deux types de méthodes : apprentissage automatique et apprentissage profond. La première contribution est fondée sur le développement de plusieurs approches d'apprentissage automatique en utilisant deux classifieurs conventionnels MLP et SVM (non linéaire) avec une sélection optimale et combinaison de plusieurs caractéristiques discriminantes. La seconde contribution est basée sur l'usage de l'apprentissage profond par transferts selon différents niveaux de fine tuning. A ce niveau, une architecture CNN originale et simplifiée a été proposée et plusieurs modèles existants (CNN : MobileNet, DenseNet121, EfficientNet, InceptionV3, ResNet50 et VGG16 ou ViT : convnext-tiny-224) ont été développés, testés et comparés. La troisième contribution est basée la combinaison d'un modèle CNN et un classifieur automatique. Dans ce cadre, différentes combinaisons ont été testées entre les différents modèles CNN et les classifieurs (SVM, KNN et RF). La dernière contribution est destinée au développement d'un système de transcription de texte manuscrit arabe assistée par ordinateur en utilisant le clustering et la recherche des parties de mots arabes (PAW) dans un corpus d'images de documents scannés. A ce stade, deux approches sont développées et testées en utilisant les modèles CNN et les réseaux Siamois et un nouveau dataset des PAW est créée. Les expériences et les comparaisons faites sur différents datasets montrent la pertinence des approches développées et leur supériorité par rapport à la littérature
  • No Thumbnail Available
    Item
    Offline Arabic handwritten character recognition: from conventional machine learning system to deep learning approaches
    (2022) Faouci, Soumia; Gaceb, Djamel; Haddad, Mohammed
    Researchers have made great strides in the area of Arabic handwritten character recognition in the last decades especially with the fast development of deep learning algorithms. The characteristics of Arabic manuscript text pose several problems for a recognition system. This paper presents a conventional machine learning system based on the extraction of a set of preselected features and an SVM classifier. In the second part, a simplified convolutional neural network (CNN) model is proposed, which is compared to six other CNN models based on the pre-trained architectures. The suggested methods were tested using three databases: two versions of the OIHACDB dataset and the AIA9K dataset. The experimental results show that the proposed CNN model obtained promising results, as it is able to recognise 94.7%, 98.3%, and 95.6% of the test set of the three databases OIHACDB-28, OIHACDB-40, and AIA9K, respectively.

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify