Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fazouane Naimi, F."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Isolation and characterization of halophilic archaea able to produce biosurfactants
    (2012) Kebbouche-Gana, Salima; Gana, M. L.; Bouanane, N. A.; Khemili, S.; Fazouane Naimi, F.; Penninckx, M.; Hacene, H.
    Halotolerants microorganisms able to live in saline environments, offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40mNm-1 and two of them exhibited high emulsion-stabilising capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contains sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactants producers designed strain A21 and strain D21 were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg2+and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15% to 20%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this a first report of biosurfactant production at such a high salt concentration

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify