Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ghasemi, Mohammad"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Predicting Methane Hydrate Formation Temperature in the Presence of Diverse Brines Using Explainable Artificial Intelligence
    (American Chemical Society, 2025) Nait Amar, Menad; Zeraibi, Noureddine; Alqahtani, Fahd Mohamad; Djema, Hakim; Benamara, Chahrazed; Saifi, Redha; Gareche, Mourad; Ghasemi, Mohammad; Merzoug, Ahmed
    Thisstudy presents three advanced techniques, includingthe leastsquares support vector machine (LSSVM), categorical boosting (CatBoost),and cascaded forward neural network (CFNN), to model methane hydrateformation temperature (MHFT) across various brines under a wide pressurerange. Utilizing a comprehensive data set of nearly 1000 samples,the models underwent rigorous training and testing phases. Graphicalanalyses and statistical assessment confirmed the high accuracy ofthe implemented models, with the CFNN scheme outperforming the others,achieving a total root-mean-square error (RMSE) of 0.3569 and an R2 of 0.9977. Comparison with existing modelsfurther highlighted the CFNN model’s superior performance.Additionally, the Shapley Additive exPlanning (SHAP) method was employedto enhance the aspects related to predictions’ explainabilityby assessing the impact of different inputs on the outcomes. Lastly,the proposed model holds significant potential for advancing industrialand academic applications related to hydrate phenomena

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify