Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Khouri, A. Ouadoud"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Enhancing Data Privacy in Intrusion Detection: A Federated Learning Framework With Differential Privacy
    (John Wiley and Sons Ltd, 2025) Saidi, Ahmed; Khouri, A. Ouadoud
    The rise of cyber threats has underscored the critical need for robust intrusion detection systems (IDS). While traditional approaches, including statistical, knowledge-based, and AI-driven methods, have been pivotal, they often face limitations such as data privacy concerns, scalability challenges, and low detection accuracy on unfamiliar threats. This paper addresses these issues by adopting a federated learning (FL) paradigm for collaborative intrusion detection, allowing data to remain local and enhancing privacy protection. The proposed solution integrates advanced encryption techniques and differential privacy to safeguard confidentiality while ensuring system scalability and adaptability. By introducing a robust separation of agents' roles and leveraging FL's decentralized architecture, the system overcomes the limitations of centralized learning, including single points of failure and communication overhead. Experimental results validate the proposed architecture, demonstrating significant improvements in performance and offering a promising direction for modern network security. This work not only highlights the potential of FL-based IDS but also explores the integration of distributed ledger technologies to further enhance trust and security. These findings contribute to the growing field of privacy-preserving computing and lay the groundwork for future innovations in scalable, secure, and efficient intrusion detection systems

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify