Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Laifaoui, Chahinaze"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Multi-objective factors optimization in fused deposition modelling with particle swarm optimization and differential evolution
    (Springer, 2022) Mellal, Mohamed Arezki; Laifaoui, Chahinaze; Ghezal, Fahima; Williams, Edward J.
    The design of any system contemplates the elaboration of a prototype of the entire system or some parts, before the manufacturing phase. Nowadays, rapid prototyping (RP) is widely used by the designers. Achieving good manufacturing performances needs to handle various process parameters. Most works deal with single objective process parameters. The reality is quite different and the processes involve conflicting objectives. This paper addresses the multi-objective factors optimization of the fused deposition modelling (FDM) technology. The problem is converted into a single one using the weighted-sum method and then solved by resorting to two nature-inspired computing techniques, namely particle swarm optimization (PSO) and differential evolution (DE). The results obtained are compared
  • No Thumbnail Available
    Item
    Optimisation mono et multi-objectif des procédés de prototypage rapide
    (Université M’Hamed Bougara Boumerdes : Faculté de Technologie, 2019) Laifaoui, Chahinaze; Ghezal, Fahima; Mellal, M. A.(Promoteur); Alem, S.(Co-Promoteur)
    La Conception des systèmes mécatroniques envisage l'établissement d'un prototype du système en entier ou de ses parties, avant la phase de fabrication. De nos jours, le prototypage rapide est très utilisé par les concepteurs. L'objectif de ce présent travail est d'optimiser (mono et multi objectif) des procédés de prototypage rapide en implémentant deux algorithmes bio-inspire de l'intelligence artificiel : Particle Swarm Optimization (PSO) et Differential Evolution (DE). Les résultats obtenus comparent les performances de deux algorithmes

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify