Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Refis, Youcef"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Linear and nonlinear control design for a quadrotor
    (2025) Hadid, Samira; Boushaki Zamoum, Razika; Refis, Youcef
    In the current study, the quadrotor's nonlinear dynamic model is developed using the Newton-Euler approach. Following that, several nonlinear and linear control strategies for tracking the quadrotor's trajectory are applied. First, by employing distinct controllers for each output variable, direct application of the linear proportional integral derivative (PID) controller to the nonlinear system is realized. This system may also be linearized about an operational point to generate linear controllers, according to the linear quadratic regulator (LQR) demonstration. Nevertheless, in practice, the system dynamics may not always be accurately reflected by this linear approximation and may even be relatively wasteful. Nonlinear regulators, including the feedback linearization (FBL) controller, sliding mode controller (SMC), and modified sliding mode controller (MSMC), perform better in such situations. The trajectory tracking capabilities, dynamic performance, and potential disruption impact of both methods are evaluated and compared. The FBL with LQR was the best controller among them all. The SMC and the MSMC were also very good in tracking the trajectory.

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify