Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rouibah, Karima"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Biosorption of zinc (II) from synthetic wastewater by using Inula Viscosa leaves as a low-cost biosorbent : experimental and molecular modeling studies
    (Elsevier, 2023) Rouibah, Karima; Ferkous, Hana; Delimi, Amel; Himeur, Touhida; Benamira, Messaoud; Zighed, Mohammed; Darwish, Ahmad S.; Lemaoui, Tarek; Yadav, Krishna Kumar; Bhutto, Javed Khan; Ahmad, Akil; Benguerba, Yacine
    The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn2+) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn2+ sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes
  • No Thumbnail Available
    Item
    Efficient biodiesel production from recycled cooking oil using a NaOH/CoFe2O4 magnetic nano-catalyst: synthesis, characterization, and process enhancement for sustainability
    (Elsevier, 2024) Bousba, Dalila; Sobhi, Chafia; Zouaoui, Emna; Rouibah, Karima; Boublia, Abir; Ferkous, Hana; Haddad, Ahmed; Gouasmia, Abir; Avramova, Ivalina; Mohammed, Zighed; Pârvulescu, Vasile I.; Yadav, Krishna Kumar
    This research introduces an environmentally sustainable approach to biodiesel production, utilizing waste cooking oil (WCO) as a renewable feedstock. The focal point of this study is the synthesis and characterization of NaOH/CoFe2O4 magnetic nanoparticles, employed as an efficient catalyst for the transesterification reaction between WCO and methanol. Comprehensive analysis, including X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, magnetometry, temperature-programmed carbon dioxide and ammonia desorption, and X-ray photoelectron spectroscopy reveals nanoparticles with remarkable catalytic properties. The transesterification process catalyzed by NaOH/CoFe2O4 yields biodiesel at an impressive rate of 98.71%, complying with ASTM standards. Kinetic and thermodynamic evaluations elucidate reaction mechanisms, and density functional theory (DFT) calculations provide insights into the catalytic process. The magnetic catalyst's reusability enhances sustainability, making it a promising solution for large-scale biodiesel production, and lays the foundation for future catalyst optimization.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify