Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Servais, Pierre"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Comparison of microbial community composition in injection and formation water from Algerian oilfields
    (2012) Lenchi, Nesrine; Inceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; Garcia-Armisen, Tamara
  • No Thumbnail Available
    Item
    Diesel Biodegradation Capacities and Biosurfactant Production in Saline-Alkaline Conditions by Delftia sp NL1, Isolated from an Algerian Oilfield
    (Taylor and Francis Inc., 2020) Lenchi, Nesrine; Kebbouche-Gana, Salima; Servais, Pierre; Gana, Mohamed Lamine; Llirós, Marc
    In this study, a diesel oil-degrading bacterium was isolated from an oilfield water injection (water-bearing formations, 1,205 m depth) in Algeria. The bacterial strain, designated NL1, was cultivated on diesel oil as sole carbon and energy sources. Molecular analyses of the 16S rRNA gene sequence (KY397882) placed NL1 strain closely related to distinct cultivated species of the Delftia genus. Optimal diesel oil biodegradation by Delftia sp NL1 strain occurred at pH 11, 40 °C, 2 M NaCl and initial hydrocarbon concentration of 5% (v/v) as sole carbon source. GC-MS analyses evidenced that strain Delftia sp NL1 was able to degrade more than 66.76% of diesel oil within only 7 days. On the other hand, and in the same conditions, biosurfactant production by Delftia sp NL1 was also evaluated evidencing high emulsifying capacity (E24 = 81%), ability to lower the surface tension of growing media (with the value of 25.7 mN m− 1), and production of glycolipids (8.7 g L−1) as biosurfactants. This research presents indigenous strain Delftia sp NL1 for diesel degradation and synthesis of biosurfactant in extreme conditions. In this sense, strain NL1 is a good candidate for possible in situ oil recovery and in wastewater treatment in refineries and oil terminals in petroleum industry
  • No Thumbnail Available
    Item
    Identification and phylogenetic analyses of anaerobic sulfidogenic bacteria in two Algerian oilfield water injection samples
    (Taylor & Francis, 2021) Lenchi, Nesrine; Kebbouche-Gana, Salima; Servais, Pierre; Gana, Mohammed Lamine; Llirós, Marc
    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon. For the first time, sulfidogenic communities in injection waters of two Algerian oilfields, Tin Fuin Tabankort (IT3) and Stah (IS2) were examined using the 16S rRNA gene cloning and sequencing approach. Water samples were inoculated into selective medium for sulfate-reducing bacteria and incubated under anaerobic conditions at 45 °C. The total number of culturable sulfidogenic microorganisms in the samples obtained from the two sampled waters (IT3 and IS2) was 2.4 × 105 cells/mL and 3.9 × 104 cells/mL, respectively. Scanning electron microscopy analyses showed different morphological forms reflecting the diversity of sulfidogenic communities. 16S rRNA gene sequencing and phylogenetic diversity analyses revealed that both water reservoirs harbor large amounts of anaerobic bacteria. However, a majority of all the sequences analyzed (e.g., 34% in the IS2 and 84% in the IT3 samples) were not assigned to any known bacterial group, suggesting that subsurface waters harbor very large sulfidogenic anaerobic microbial communities of as yet undescribed bacterial phyla. Proteobacteria were found to be the most dominant phylum in the IS2 sample (49%); however, no Proteobacteria were detected at the IT3 production well. The Firmicutes phylum (10%) was detected in the two water samples, whereas Bacteroidetes phylum (7%) was retrieved only in IT3. The most abundant related genera were: Desulfotomaculum, Porphyrobacter, Hyphomicrobium, Acidocella, Comamonas, Ramlibacter, Pseudomonas, Enterobacter and Flavitalea. No shared operational taxonomic units were observed among the two samples analyzed, demonstrating the uniqueness of each subsurface water well. This study demonstrates the diversity of the sulfidogenic bacteria that might play a critical role in the souring mediated corrosion of metallic oilfield pipelines. This information could help oilfield companies develop better anticorrosion treatments and strategies
  • No Thumbnail Available
    Item
    Microbacterium algeriense sp. nov., a novel actinobacterium isolated from Algerian oil production waters
    (Microbiology Society, 2020) Lenchi, Nesrine; Anzil, Adriana; Servais, Pierre; Kebbouche-Gana, Salima; Gana, Mohamed Lamine
    A non-motile, straight-rod-shaped, Gram-stain-positive and facultative anaerobic bacterium (i.e., strain G1T) was isolated from production waters from an Algerian oilfield. Growth was observed in the presence of 0.3-3.5 % (w/v) NaCl, at 20-50 °C and at pH 6.0-9.0. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that strain G1T belonged to the genus Microbacterium. Strain G1 T was closely related to Microbacterium oxydans (DSM 20578T) and Microbacterium maritypicum (DSM 12512T) with 99.8 % sequence similarity and to Microbacterium saperdae (DSM 20169T) with 99.6 % sequence similarity. Strain G1 T contained MK9, MK10, MK11, MK12 and MK13 as respiratory quinones, and phosphatidylglycerol, diphosphatidylglycerol and glycolipid as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The estimated DNA G+C content was 69.57 mol% based on its draft genome sequence. Genome annotation of strain G1T predicted the presence of 3511 genes, of which 3483 were protein-coding and 47 were tRNA genes. The DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) values between strain G1T and M. oxydans (DSM 20578T) and M. maritypicum (DSM 12512T) were in both cases far below the respective species boundary thresholds (27.5 and 28.0 % for DDH; and 84.40 and 84.82% for ANI, respectively). Based on the data presented above, strain G1T was considered to represent a novel species for which the name Microbacterium algeriense is proposed with the type strain G1T (=DSM 109018T=LMG 31276T)

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify