Publications Scientifiques

Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Removal of Amoxicillin From Wastewater Onto Activated Carbon: Optimization of Analytical Parameters by Response Surface Methodology
    (SAGE Publications Inc., 2024) Abbas, Moussa; Trari, Mohamed
    Antibiotics are widely used in veterinary and human medicine, but these compounds, when released into the aquatic environment, present potential risks to living organisms. In the present study, the activated carbon (AC) used for their removals is characterized by FT-IR spectroscopy, BET analysis and Scanning Electron Microscopy (SEM) to determine the physicochemical characteristics. Response surface methodology (RSM) and Box-Behnken statistical design (BBD) were used to optimize important parameters including pH (2-12), temperature (20-45°C), and AC dose (0.05-0.20 g). The experimental data were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial using multiple regression analysis. The optimal conditions for maximum elimination of Amoxicillin (Amox) are (Dose: 0.124 g, pH 5.03 and 45°C) by applying the desirability function (df). A confirmation experiment was carried out to evaluate the accuracy of the optimization model and maximum removal efficiency (R = 89.999%) was obtained under the optimized conditions. Several error analysis equations were used to measure goodness of fit. Pareto analysis suggests the importance of the relative order of factors: pH > Temperature > AC dose in optimized situations. The equilibrium adsorption data of Amox on Activated Carbone were analyzed by Freundlich, Elovich, Temkin and Langmuir models. The latter gave the best correlation with qmax capacities of 142.85 mg/g (R2 = 0.999) at 25°C is removed from solution. The adsorption process is dominated by chemisorption and the kinetic model obeys a pseudo-second order model (R2 = 0.999).
  • Item
    Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon
    (Elsevier, 2014) Abbas, Moussa; Kaddour, S.; Trari, M.
    The activated carbon from apricot stone with H3PO4 and its ability to remove Co2+ are reported. The FTIR spectroscopy brings insights on interactions between the functional groups of the carbon and Co2+. Adsorption studies are carried in batch mode by varying the initial Co2+ concentration and pH. A comparison of two kinetic models on the overall adsorption rate shows that the system is described by the pseudo-second-order kinetic model. The Freundlich model fits the data with a monolayer adsorption capacity of 111.11 mg/g at pH 9. The enthalpy and free energy indicate an endothermic and not spontaneous process