Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
5 results
Search Results
Item Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms(SAGE, 2024) Afia, Adel; Gougam, Fawzi; Rahmoune, Chemseddine; Touzout, Walid; Ouelmokhtar, Hand; Benazzouz, DjamelDue to their complexity and often harsh working environment, air compressors are inevitably exposed to a variety of faults and defects during their operation. Thus, condition monitoring is critically required for early fault recognition and detection to avoid any type industrial failures. In this paper, an intelligent algorithm for reciprocating air compressor fault diagnosis is developed using real-time acoustic signals acquired from an air compressor with one healthy and seven different faulty states such as leakage inlet valve (LIV), leakage outlet valve (LOV), non-return valve (NRV), piston ring, flywheel, rider-belt and bearing defects. The proposed algorithm mainly consists of three steps: feature extraction, selection, and classification. For feature extraction, experimental acoustic signals are decomposed using maximal overlap discrete wavelet packet transform (MODWPT) by six levels into 64 wavelet coefficients (nodes). Thereafter, time domain features are calculated for each node to build each air compressor’s health state feature matrix. Each feature matrix dimension is reduced by selecting the most useful features using Harris hawks optimization (HHO) in the feature selection step. Finally, for feature classification, selected features are used as inputs for random forest (RF), ensemble tree (ET) and K-nearest neighbors (KNN) to detect, identify, and classify the compressor health states with high classification accuracy. Comparative studies with several feature extraction and selection methods prove the proposed approach’s efficiency in detecting, identifying, and classifying all air compressor faults.Item Bearing faults classification using a new approach of signal processing combined with machine learning algorithms(Springer Nature, 2024) Gougam, Fawzi; Afia, Adel; Soualhi, Abdenour; Touzout, Walid; Rahmoune, Chemseddine; Benazzouz, DjamelVibration analysis plays a crucial role in fault and abnormality diagnosis in various mechanical systems. However, efficient vibration signal processing is required for valuable diagnosis and hidden patterns’ detection and identification. Hence, the present paper explores the application of a robust signal processing method called maximal overlap discrete wavelet packet transform (MODWPT) that supports multiresolution analysis, allowing for the examination of signal details at different scales. This capability is valuable for identifying faults that may manifest at different frequency ranges. MODWPT is combined with covariance and eigenvalues to signal reconstruction. After that, health indicators are specifically applied on the reconstructed vibration signal for feature extraction. The proposed approach was carried out on an experimental test rig where the obtained results demonstrate its effectiveness through confusion matrix analysis of machine learning tools. The ensemble tree model gives more accurate results (accuracy and stability) of bearing faults classification and efficiently identify potential failures and anomalies in mechanical equipment.Item Bearing fault diagnosis based on feature extraction of empirical wavelet transform (EWT) and fuzzy logic system (FLS) under variable operating conditions(JVE International, 2019) Gougam, Fawzi; Rahmoune, Chemseddine; Benazzouz, Djamel; Merainani, BoualemCondition monitoring of rotating machines has become a more important strategy in structural health monitoring (SHM) research. For fault recognition, the analysis is categorized in two essential main parts: Feature extraction and classification; the first one is used for extracting the information from the signal and the other for decision-making based on these features. A higher accuracy is needed for sensitive places to avoid all kinds of damages that can lead to economic losses and it may affect the human safety as well. In this paper, we propose a new hybrid and automatic approach for bearing faults diagnosis. This method uses a combination between Empirical wavelet Transform (EWT) and Fuzzy logic System (FLS), in order to detect and localize the early degradation of bearing state under different working conditions. EWT build a wavelet filter bank to extract amplitude modulated-frequency modulated component of signal. Modes presenting a high impulsiveness is then selected using the kurtosis indicator. Thereafter, time domain features (TDFs) are applied for the reconstructed signal to extract the fault features which are finally used as an inputs of FLS in order to identify and classify the bearing states. The experimental results shows that the proposed method can accurately extract and classify the bearing fault under variable conditions. Moreover, performance of EWT and empirical mode decomposition (EMD) are studied and shows the superiority of the proposed methodItem Fault feature extraction and classification based on HEWT and SVD : application to rolling bearings under variable conditions(IEEE, 2017) Merainani, Boualem; Rahmoune, Chemseddine; Benazzouz, Djamel; Ould-Bouamama, Belkacem; Ratni, AzeddineItem Rolling bearing fault diagnosis based empirical wavelet transform using vibration signal(IEEE, 2017) Merainani, Boualem; Rahmoune, Chemseddine; Benazzouz, Djamel; Ould-Bouamama, Belkacem
