Publications Scientifiques

Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Comparative analysis on heat transfer, between a steady and oscillating jet in a cavity
    (Inderscience Publishers, 2024) Iachachene, Farida; Mataoui, Amina
    This paper numerically investigates the cooling of a heated rectangular cavity by a cold slot jet. The study aims to examine the effect of the jet location inside the cavity (Lf and Lh) and Reynolds number on heat transfer, using URANS turbulence modelling. Different flow behaviours, including oscillatory and steady flows, are generated depending on the jet location inside the cavity. The study identifies and discusses the optimal jet locations for achieving optimal cavity cooling. The results indicate that the lateral placement of the jet has a negligible effect on heat transfer across all cavity walls. Additionally, oscillatory flow consistently expands the heat exchange zone along all three walls, resulting in a wider effective exchange area compared to steady flow conditions. The study proposes optimised jet positions within the cavity for specific wall cooling requirements. By considering the optimal combination of jet height and impinging distance, the cooling performance can be optimised.
  • Item
    Comparison of turbulent forced convection between wall jet and channel flow over a heated obstacle
    (Inderscience, 2017) Kabache, Malika; Mataoui, Amina; Oztop, Hakan F.
  • Item
    Heat transfer prediction of a jet impinging a cylindrical deadlock area
    (American Society of Mechanical Engineers (ASME), 2014) Halouane, Yacine; Mataoui, Amina; Iachachene, Farida
  • Item
    Rayleigh number effect on the turbulent heat transfer within a parallelepiped cavity
    (2011) Aksouh, Mohamed; Mataoui, Amina; Seghouani, Nassim; Haddad, Zoubida
    This purpose is about a 3-D study of natural convection within cavities. This problem is receiving more and more research interest due to its practical applications in the engineering and the astrophysical research. The turbulent natural convection of air in an enclosed tall cavity with high aspect ratio (Ar = = H/W = 28.6)is examined numerically. Two cases of differential temperature have been considered between the lateral cavity plates corresponding, respectively, to the low and high Rayleigh numbers: Ra = 8.6.10 5 and Ra = = 1.43.10 6. For these two cases, the flow is characterized by a turbulent low Reynolds number. This led us to improve the flow characteristics using two one point closure low-Reynolds number turbulence models: renormalization group κ-ε model and shear stress transport κ-ω model, derived from standard κ-ε model and standard κ-ω model, respectively. Both turbulence models have provided an excellent agreement with the experimental data. In order to choose the best model, the average Nusselt number is compared to the experiment and other numerical results. The vorticity components surfaces confirm that the flow canbe considered 2-D with stretched vortex in the cavity core. Finally, a correlation between Nusselt number and Rayleigh number is obtained to predict the heat transfer characteristics
  • Item
    Fluid flow of a wall jet impinging a hot obstacle
    (Japan Society of Mechanical Engineers, 2015) Kabache, Malika; Mataoui, Amina