Publications Scientifiques

Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10

Browse

Search Results

Now showing 1 - 10 of 31
  • Item
    A Monadic Second-Order Temporal Logic framework for hypergraphs
    (Springer Nature, 2024) Bhuyan, Bikram Pratim; Singh, Thipendra P.; Tomar, Ravi; Meraihi, Yassine; Ramdane-Cherif, Amar
    This study introduces a novel computational framework integrating monadic second-order temporal logic (MSOTL) with hypergraph models to enhance the predictive analysis and prediction of complex systems, with a specific focus on urban agriculture. Traditional graph-based models often fail to capture the intricate, high-order temporal dynamics inherent in such systems. By leveraging the expressive power of MSOTL within a hypergraph context, our approach enables a more nuanced representation of temporal and relational data, leading to improved predictive accuracy and deeper analytical insights. The framework was applied to a comprehensive dataset of urban agricultural practices, incorporating data from diverse farming sites across multiple countries. Our results demonstrate the model’s capability to outperform existing methods in predicting agricultural outcomes by effectively capturing both the spatial and temporal complexities of urban farming data. The study not only advances the theoretical understanding of hypergraph-based temporal logic modeling but also offers an application for urban agricultural planning and management.
  • Item
    Solving the LEDs placement problem in indoor VLC system using a hybrid coronavirus herd immunity optimizer
    (Springer Nature, 2024) Benayad, Abdelbaki; Boustil, Amel; Meraihi, Yassine; Yahia, Selma; Mekhmoukh Taleb, Sylia; Ait Saadi, Amylia; Ramdane-Cherif, Amar
    Visible light communication (VLC) is a developing technology enabling simultaneous illumination and communication between users. This is achieved by employing light emitting diodes (LEDs) as transmitters and photo-detectors (PDs) as receivers. In indoor visible light communication (VLC) systems, a significant challenge is the deployment of a various number of LEDs that accommodate different numbers of users. This particular problem falls under the category of Non-deterministic polynomial-time hard (NP-hard), making it difficult to find exact solutions in a reasonable amount of time. As a result, employing approximation approaches, particularly meta-heuristics, proves to be a suitable and effective way to address this challenge. In this paper, we propose a hybrid approach (ICHIO-FA) based on the combination of improved coronavirus herd immunity optimizer (ICHIO) with firefly algorithm (FA) for solving the LEDs placement problem in an indoor VLC system. In the proposed ICHIO-FA algorithm, the chaotic map concept is adopted to increase the chaotic stochastic behavior of the CHIO. Moreover, the opposition-based learning (OBL) mechanism is applied to enhance the convergence speed of CHIO and explore the search space effectively. Finally, FA is used as a local search method for ICHIO to avoid trapping into local optima. The effectiveness of the proposed ICHIO-FA algorithm is tested on several scenarios under different settings, taking into account the throughput and user coverage metrics. Simulation results demonstrate the accuracy and superiority of the ICHIO-FA approach in finding optimal LEDs positions when compared with the standard CHIO, FA, particle swarm optimization (PSO), genetic algorithm (GA), marine predators algorithm (MPA), whale optimization algorithm (WOA), manta ray foraging optimization (MRFO), bat algorithm (BA), grey wolf optimizer (GWO), and simulated annealing (SA).
  • Item
    Hybrid whale optimization algorithm with simulated annealing for the UAV placement problem
    (Springer Nature, 2024) Taleb, Sylia Mekhmoukh; Meraihi, Yassine; Yahia, Selma; Ramdane-Cherif, Amar; Gabis, Asma Benmessaoud; Acheli, Dalila
    This chapter suggests a hybrid algorithm based on the combination of whale optimization algorithm (WOA) with simulated annealing (SA), called WOA-SA, for solving the unmanned aerial vehicle (UAV) placement problem. WOA-SA combines WOA’s global search functionality with SA’s local search functionality. The main objective of our work is to determine the optimal position of the UAV in order to maximize the total throughput, depending on a given set of user locations and traffic demands. The WOA-SA algorithm is validated in terms of the total throughput using 18 distinct instances with various numbers of users, taking into account the effect of the distribution of user positions. The results of simulation using Matlab demonstrated that the WOA-SA algorithm obtains better results than WOA, SA, Particle Swam Optimization (PSO), Genetic Algorithm (GA), and Bat Algorithm (BA).
  • Item
    An Enhanced white shark optimization algorithm for unmanned aerial vehicles placement
    (Springer Nature, 2024) Saadi, Amylia Ait; Soukane, Assia; Meraihi, Yassine; Gabis, Asma Benmessaoud; Ramdane-Cherif, Amar; Yahia, Selma
    In this chapter, we propose an Elite Opposition-Based White Shark Optimization (ELWSO) Algorithm, for tackling the Unmanned Aerial Vehicles (UAVs) Placement problem in smart cities. The proposed EWSO scheme is based on the incorporation of the Elite opposition-based strategy to ameliorate the optimization efficiency of the original WSO. EWSO was assessed in terms of fitness, coverage, and connectivity metrics under 23 cases with different numbers of UAVs and users. The results of simulated experiments, conducted using MATLAB 2021b version, revealed that the EWSO algorithm outperforms the basic WSO, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Bat Algorithm (BA).
  • Item
    Speech analysis–synthesis using sinusoidal representations: A review
    (Springer Nature, 2024) Tabet, Youcef; Hina, Manolo Dulva; Meraihi, Yassine
    Various speech analysis–synthesis representations have been suggested in the literature, and the more well-known ones are explored in this chapter, specifically, sinusoidal representation, harmonic/noise representation, and adaptive sinusoidal representations. Hence, the main objective of this chapter is to give a tutorial review of speech analysis–synthesis representations, by highlighting major improvements over these representations. It would be a desirable representation of speech that is relatively simple, flexible, high quality, and robust in re-synthesis. Emphasis will be given in adaptive sinusoidal representations, since they seem to be more promising and robust representations of speech.
  • Item
    An Enhanced Aquila Optimizer Algorithm for Resource Allocation in Indoor Multi-user IoT VLC System
    (2023) Yahia, Selma; Meraihi, Yassine; Mekhmoukh Taleb, Sylia; Mirjalili, Seyedali; Ramdane-Cherif, Amar; B. Eldeeb, Hossien; Muhaidat, Sami
    Visible light communication (VLC) is a rapidly growing wireless communication technology for the Internet of Things (IoT) that offers high data rates and low latency, making it ideal for massive connectivity. Efficient resource allocation is essential in VLC networks to minimize inter-symbol and co- channel interferences, which can greatly improve network perfor- mance and user satisfaction. This paper focuses on an indoor IoT- based VLC system that utilizes photodetectors (PDs) on users’ cell phones as receivers, with the goal of maximizing system performances and reducing power consumption by selectively activating some PDs while deactivating others. However, this objective presents a challenge due to the inherent non-convex nature of the multi-objective optimization problem, which cannot be solved by analytical means. To address this, we propose an enhanced Aquila optimization (EAO) scheme that improves upon the Aquila Optimizer (AO) by incorporating a fitness distance balance (FDB) function. We evaluate our proposed EAO in various scenarios under different settings, considering both capacity and fairness metrics. Through simulations, we demonstrate the effectiveness of our approach and its superiority over classical algorithms such as Aquila Optimizer (AO), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) in finding the optimal solution. Our results confirm that the proposed EAO algorithm can efficiently optimize the system capacity and ensure fairness among all users, providing a promising solution for indoor VLC systems.
  • Item
    Performance analysis of bidirectional multi-hop vehicle-to-vehicle visible light communication
    (Institute of Electrical and Electronics Engineers Inc, 2023) Refas, Souad; Acheli, Dalila; Yahia, Selma; Meraihi, Yassine; Ramdane-Cherif, Amar; Van, Nhan Vo; Ho, Tu Dac
    Vehicular visible light communication (VVLC) has emerged as a promising field of research, garnering considerable attention from scientists and researchers. VVLC offers a potential solution to enable connectivity and communication between travelling vehicles along the road by using their existing headlights (HLs) and taillights (TLs) as wireless transmitters and integrating photodetectors (PDs) within the car front or car-back as wireless receivers. However, VVLC encounters more challenges than indoor VLC, particularly in vehicle-to-vehicle (V2V) communication, where vehicle mobility disrupts the establishment of direct communication links. To address this, we propose a multi-hop relay system wherein intermediate vehicles act as wireless relays to maintain a line-of-sight (LoS) link. In this paper, we investigate the performance of a bidirectional multi-hop relay V2V-VLC system that operates in both the forward and backward directions. Based on realistic ray tracing channel models, we derive a closed-form expression for the full bidirectional communication range. We also analyze how the transceiver's parameters and the number of relays affect the system performance. Our results show that the proposed bidirectional multi-hop relay system can extend the direct transmission range by more than 19 m with only a hop relay.
  • Item
    An enhanced aquila-based resource allocation for efficient indoor IoT visible light communication
    (Institute of Electrical and Electronics Engineers Inc., 2023) Yahia, Selma; Meraihi, Yassine; Taleb, Sylia Mekhmoukh; Mirjalili, Seyedali; Ramdane-Cherif, Amar; Ho, Tu Dac; Eldeeb, Hossien B.; Muhaidat, Sami
    Visible light communication (VLC) is a rapidly growing wireless communication technology for the Internet of Things (IoT) that offers high data rates and low latency, making it ideal for massive connectivity. Efficient resource allocation is essential in VLC networks to minimize inter-symbol and cochannel interferences, which can greatly improve network performance and user satisfaction. This paper focuses on an indoor IoT-based VLC system that utilizes photodetectors (PDs) on users' cell phones as receivers, with the goal of maximizing system performances and reducing power consumption by selectively activating some PDs while deactivating others. However, this objective presents a challenge due to the inherent non-convex nature of the multi-objective optimization problem, which cannot be solved by analytical means. To address this, we propose an enhanced Aquila optimization (EAO) scheme that improves upon the Aquila Optimizer (AO) by incorporating a fitness distance balance (FDB) function. We evaluate our proposed EAO in various scenarios under different settings, considering both capacity and fairness metrics. Through simulations, we demonstrate the effectiveness of our approach and its superiority over classical algorithms such as Aquila Optimizer (AO), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) in finding the optimal solution. Our results confirm that the proposed EAO algorithm can efficiently optimize the system capacity and ensure fairness among all users, providing a promising solution for indoor VLC systems
  • Item
    Capacity Maximization for V2I-VLC System with Angular Diversity Receiver
    (IEEE, 2023) Yahia, Selma; Meraihi, Yassine; Amar Ramdane, Cherif; Hossien B., Eldeeb; Muhaidat, Sami
    This paper investigates the effectiveness of angle diversity technology-based vehicle-to-infrastructure (V2I) visible light communication (VLC) system designed for a multi-lane road scenario. Cars use their headlights to transmit signals to a traffic light pole, which is equipped with an angle diversity receiver (ADR) comprising three photodetectors (PD) arranged in different directions to improve signal reception from various directions. We utilize an advanced ray tracing channel modeling approach and investigate the impact of the number of PDs and the elevation angles on the received power. Additionally, we conduct a comprehensive performance analysis in terms of capacity, considering different car positions along the road. The results demonstrate that the V2I-VLC system with ADR achieves a channel capacity of over 2.5 Mb/s at a transmission distance of 50 meters, highlighting its potential to enhance V2I-VLC connectivity.
  • Item
    A novel hybrid Chaotic Aquila Optimization algorithm with Simulated Annealing for Unmanned Aerial Vehicles path planning
    (Elsevier, 2022) Ait Saadi, Amylia; Meraihi, Yassine; Soukane, Assia; Benmessaoud Gabis, Asma; Amar Ramdane, Cherif
    In recent years, research on Unmanned Aerial Vehicles (UAVs) has become one of the interest- ing topics for industry and academic. UAV path plan- ning is one of the critical issues in terms of guaran- teeing the autonomy and good performance of UAVs in real-world applications. Its main objective is to de- termine and ensure an optimal and collision-free path between two positions from a starting point (source) to a destination one (target) while satisfying some UAV requirements (i.e. UAV’s safety, environment complex- ity, obstacle avoidance, energy consumption,etc). Due to the complexity of this topic, an efficient path plan- ning algorithm is required. This paper presents an opti- mal and hybrid algorithm, called CAOSA, based on the hybridization of Chaotic Aquila Optimization (CAO) and Simulated Annealing (SA) algorithms for solving the UAV path planning problem in a 3D environment. As a first step, chaotic map is introduced to enhance the chaotic stochastic behavior of the Aquila Optimization (AO) algorithm. In the second step, the SA algorithm is combined with CAO algorithm to improve the best so- lution (path quality) obtained after each iteration of COA. The main purpose of using SA is to increase the exploitation by searching for the most promising regions identified by the CAO algorithm. The perfor- mance of the proposed CAOSA algorithm is evaluated on several scenarios under different settings consider- ing the fitness value, path cost, and execution time metrics. Simulation results showed superiority and ro- bustness of CAOSA algorithm compared to nine meta- heuristics such as Simulated Annealing (SA), Particle Swarm Optimization (PSO), Bat Algorithm (BA), Fire- fly optimization (FA), Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), Whale Optimization Al- gorithm (WOA), Dragonfly Algorithm (DA), and the original Aquila Optimization (AO). It is also revealed that CAOSA can offer an optimized path that improves UAV path planning requirements significantly in com- plex environments