Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
23 results
Search Results
Item Modeling wax disappearance temperature using robust white-box machine learning(Elsevier Ltd, 2024) Nait Amar, Menad; Zeraibi, Noureddine; Benamara, Chahrazed; Djema, Hakim; Saifi, Redha; Gareche, MouradWax deposition is one of the major operational problems encountered in the upstream petroleum production system. The deposition of this undesirable scale can cause a variety of challenging problems. In order to avoid the latter, numerous parameters associated with the mechanism of wax deposition should be determined precisely. In this study, a new smart correlation was proposed for the accurate prediction of Wax disappearance temperature (WDT) using a robust explicit-based machine learning (ML) approach, namely gene expression programming (GEP). The correlation was developed using comprehensive experimental measurements. The obtained results revealed the promising degree of accuracy of the suggested GEP-based correlations. In this context, the newly-introduced correlations provided excellent statistical metrics (R2 = 0.9647 and AARD = 0.5963 %). Furthermore, performance of the developed correlation outperformed that of many existing approaches for predicting WDT. In addition, the trend analysis performed on the outcomes of the proposed GEP-based correlations divulged their physical validity and consistency. Lastly, the findings of this study provide a promising benefit, as the newly developed correlations can notably improve the adequate estimation of WDT, thus facilitating the simulation of wax deposition-related phenomena. In this context, the proposed correlations can supply the effective management of the production facilities and improvement of project economics since the provided correlation is a simple-to-use decision-making tool for production and chemical engineers engaged in the management of organic deposit-related issues.Item Toward robust models for predicting carbon dioxide absorption by nanofluids(John Wiley and Sons Inc, 2022) Nait Amar, Menad; Djema, Hakim; Belhaouari, Samir Brahim; Zeraibi, Noureddine; https://doi.org/10.1002/ghg.2166The application of nanofluids has received increased attention across a number of disciplines in recent years. Carbon dioxide (CO2) absorption by using nanofluids as the solvents for the capture of CO2 is among the attractive applications, which have recently gained high popularity in various industrial aspects. In this work, two robust explicit-based machine learning (ML) methods, namely group method of data handling (GMDH) and genetic programming (GP) were implemented for establishing accurate correlations that can estimate the absorption of CO2 by nanofluids. The correlations were developed using a comprehensive database that involved 230 experimental measurements. The obtained results revealed that the proposed ML-based correlations can predict the absorption of CO2 by nanofluids with high accuracy. Besides, it was found that the GP-based correlation yielded more precise predictions compared to the GMDH-based correlation. The GP-based correlation has an overall coefficient of determination of 0.9914 and an overall average absolute relative deviation of 3.732%. Lastly, the carried-out trend analysis confirmed the compatibility of the proposed GP-based correlation with the real physical tendency of CO2 absorption by nanofluidsItem Prediction of Wax Appearance Temperature Using Artificial Intelligent Techniques(Springer, 2020) Benamara, Chahrazed; Gharb, Kheira; Nait Amar, Menad; Hamada, BoudjemaThe paraffin particles can promote and be involved in the formation of deposits which can lead to plugging of oil production facilities. In this work, an experimental prediction of wax appearance temperature (WAT) has been performed on 59 Algerian crude oil samples using a pour point tester. In addition, a modeling investigation was done to create reliable WAT paradigms. To do so, gene expression programming and multilayers perceptron optimized with Levenberg–Marquardt algorithm (MLP-LMA) and Bayesian regularization algorithm were implemented. To generate these models, some parameters, namely density, viscosity, pour point, freezing point and wax content in crude oils, have been used as input parameters. The results reveal that the developed models provide satisfactory results. Furthermore, the comparison between these models in terms of accuracy indicates that MLP-LMA has the best performances with an overall average absolute relative error of 0.23% and a correlation coefficient of 0.9475.Item Optimization of WAG in real geological field using rigorous soft computing techniques and nature-inspired algorithms(Elsevier, 2021) Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui; Zeraibi, NoureddineTo meet the ever-increasing global energy demands, it is more necessary than ever to ensure increments in the recovery factors (RF) associated with oil reservoirs. Owing to this challenge, enhanced oil recovery (EOR) techniques are increasingly gaining more significance as robust strategies for producing more oil volumes from mature reservoirs. Water alternating gas (WAG) injection is an EOR method intended at improving the microscopic and macroscopic displacement efficiencies. To handle and implement successfully this technique, it is of vital importance to optimize its operating parameters. This study targeted at implementing robust proxy paradigms for investigating the suitable design parameters of a WAG project applied to real field data from “Gullfaks” in the North Sea. The proxy models aimed at reducing significantly the rum-time related to the commercial simulators without scarifying the accuracy. To this end, machine learning (ML) approaches, including multi-layer perceptron (MLP) and radial basis function neural network (RBFNN) were implemented for estimating the needed parameters for the formulated optimization problem. To improve the reliability of these ML methods, they were evolved using optimization algorithms, namely Levenberg–Marquardt (LM) for MLP, and ant colony optimization (ACO) and grey wolf optimization (GWO) for RBFNN. The performance analysis of the proxy models revealed that MLP-LMA has better prediction ability than the other two proxy paradigms. In this context, the highest average absolute relative deviation noticed per runs by MLP-LMA was lower than 3.60%. Besides, the best-implemented proxy was coupled with ACO and GWO for resolving the studied WAG optimization problem. The findings revealed that the suggested proxies are cheap, accurate, and practical in emulating the performance of numerical reservoir model. In addition, the results demonstrated the effectiveness of ACO and GWO in optimizing the parameters of WAG process for the real field data used in this studyItem Robust smart schemes for modeling carbon dioxide uptake in metal - organic frameworks(Elsevier, 2021) Nait Amar, Menad; Ouaer, Hocine; Abdelfetah Ghriga, MohammedThe emission of greenhouse gases such as carbon dioxide (CO2) is considered the most acute issue of the 21st century around the globe. Due to this fact, significant efforts have been made to develop rigorous techniques for reducing the amount of CO2 in the atmosphere. Adsorption of CO2 in metal–organic frameworks (MOFs) is one of the efficient technologies for mitigating the high levels of emitted CO2. The main aim of this study is to examine the aptitudes of four advanced intelligent models, including multilayer perceptron (MLP) optimized with Levenberg-Marquardt (MLP-LMA) and Bayesian Regularization (MLP-BR), extreme learning machine (ELM), and genetic programming (GP) in predicting CO2 uptake in MOFs. A sufficiently widespread source of data was used from literature, including more than 500 measurements of CO2 uptake in13 MOFs with various pressures at two temperature values. The results showed that the implemented intelligent paradigms provide accurate estimations of CO2 uptake in MOFs. Besides, error analyses and comparison of the prediction performance revealed that the MLP-LMA model outperformed the other intelligent models and the prior paradigms in the literature. Moreover, the MLP-LMA model yielded an overall coefficient of determination (R2) of 0.9998 and average absolute relative deviation (AARD) of 0.9205%. Finally, the trend analysis confirmed the high integrity of the MLP-LMA model in prognosticating CO2 uptake in MOFs, and its predictions overlapped perfectly the measured values with changes in pressure and temperatureItem Predicting solubility of nitrous oxide in ionic liquids using machine learning techniques and gene expression programming(Elsevier, 2021) Nait Amar, Menad; Ghriga, MMohammed Abdelfetah; Ben Seghier, Mohamed El Amine; Ouaer, HocineBackground: - Nitrous oxide (N2O), as a potent greenhouse gas, is increasingly becoming a major multidisciplinary concern in recent years. Therefore, the removal of N2O using powerful green solvents such as ionic liquids (ILs) has turned into an attractive way to reduce the amount of N2O in the atmosphere. Methods: -The aim of this study was to establish rigorous models that can predict the solubility of N2O in various ILs. To achieve this, three advanced soft-computing methods, viz. cascaded forward neural network (CFNN), radial basis function neural network (RBFNN), and gene expression programming (GEP) were trained and tested using comprehensive experimental measurements. Significant Findings: - The obtained results demonstrated that the newly implemented models can predict the solubility of N2O in ILs with high accuracy. Besides, it was found that the CFNN model optimized using Levenberg-Marquardt (LM) algorithm was the best predictive paradigm (R2=0.9994 and RMSE=0.0047). Lastly, the Leverage technique was carried out, and the statistical validity of the newly implemented model was documented as more than 96% of data were located in the applicability realm of this paradigm. © 2021 Taiwan Institute of Chemical EngineersItem Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs(Elsevier, 2019) Redouane, Kheireddine; Zeraibi, Noureddine; Nait Amar, MenadWell placement optimization is a decisive task for the reliable design of field development plans. The use of optimization routines coupled to reservoir simulation models as an automatic tool is a popular practice, which could improve the decision-making process on well placement problems. However, despite the various automatic techniques developed, there is still a lack of robust computer-added optimization tool, which can solve the well placement problem with high accuracy in reasonable time while handling the technical constraints properly. In this paper, a hybrid intelligent system is proposed to deal with a real well placement problem with arbitrary well trajectories, complex model grids, and linear and nonlinear constraints. In this intelligent approach, a Genetic Algorithm (GA) combined with a hybrid constraint-handling strategy is applied in conjunction with a constrained space-filling sampling design, Gaussian Process (GP) surrogate model, and one proposed adaptive sampling routine. This self-adaptive framework allows to consecutively augment the quality of surrogate, enhance the accuracy of the process, and thus guide the optimization rapidly into the optimal solution. To demonstrate the efficiency of the developed method, a full-field reservoir case is considered. This case covers a real well placement project in a fractured unconventional reservoir of El Gassi, which is a mature field located in Hassi-Massoud, Algeria. The obtained results highlighted the effectiveness of the proposed approach for solving the real well placement problem with high accuracy in reasonable CPU-time. These auspicious features make it a reliable tool to be used on other real optimization projectsItem Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization(Springer, 2018) Nait Amar, Menad; Zeraibi, Noureddine; Kheireddine, RedouaneThe optimization of water alternating gas injection (WAG) process is a complex problem, which requires a significant number of numerical simulations that are time-consuming. Therefore, developing a fast and accurate replacing method becomes a necessity. Proxy models that are light mathematical models have a high ability to identify very complex and non-straightforward problems such as the answers of numerical simulators in brief deadlines. Different static proxy models have been used to date, where a predefined model is employed to approximate the outputs of numerical simulators such as field oil production total (FOPT) or net present value, at a given time and not as functions of time. This study demonstrates the application of time-dependent multi Artificial Neural Networks as a dynamic proxy to the optimization of a WAG process in a synthetic field. Latin hypercube design is used to select the database employed in the training phase. By coupling the established proxy with genetic algorithm (GA) and ant colony optimization (ACO), the optimum WAG parameters, namely gas and water injection rates, gas and water injection half-cycle, WAG ratio and slug size, which maximize FOPT subject to some time-depending constraints, are investigated. The problem is formulated as a nonlinear optimization problem with bound and nonlinear constraints. The results show that the established proxy is found to be robust and an efficient alternative for mimicking the numerical simulator performances in the optimization of the WAG. Both GA and ACO are strongly shown to be highly effective in the combinatorial optimization of the WAG process.Item Modeling wax disappearance temperature using advanced intelligent frameworks(American Chemical Society, 2019) Benamara, Chahrazed; Nait Amar, Menad; Gharbi, Kheira; Hamada, BoudjemaThe deposition of wax is one of the most potential problems that disturbs the flow assurance during production processes of hydrocarbon fluids. In this study, wax disappearance temperature (WDT) that is recognized as a vital parameter in such circumstances is modeled using advanced machine learning techniques, namely, radial basis function neural network (RBFNN) coupled with genetic algorithm (GA) and artificial bee colony (ABC). Besides, an accurate and user-friendly correlation was established by implementing the group method of data handling. Results revealed the high reliability of the proposed hybrid models and the established correlation. Moreover, RBFNN coupled with ABC (RBFNN-ABC) was found to be the best paradigm with an overall average absolute relative error value of 0.5402% and a total coefficient of determination (R2) of 0.9706. Furthermore, the performance comparison showed that RBFNN-ABC and the established explicit correlation outperform the prior intelligent and thermodynamic models. Finally, by performing the outlier detection, the quality of the utilized database was assessed, the applicability realm of the best model was delineated, and only one point was found as doubtfulItem On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems(Elsevier, 2021) Nait Amar, Menad; Ghriga, Mohammed Abdelfetah; Ouaer, HocineIonic Liquids (ILs) are increasingly emerging as new innovating green solvents with great importance from academic, industrial, and environmental perspectives. This surge of interest in considering ILs in various applications is owed to their attractive properties. Involvements in the gas sweetening and the reduction of the amounts of sour and acid gasses are among the most promising applications of ILs. In this study, new advanced committee machine intelligent systems (CMIS) were introduced for predicting the solubility of hydrogen sulfide (H2S) in various ILs. The implemented CMIS models were gained by linking robust data-driven techniques, namely multilayer perceptron (MLP) and cascaded forward neural network (CFNN) beneath rigorous schemes using group method of data handling (GMDH) and genetic programming (GP). The proposed paradigms were developed using an extensive database encompassing 1243 measurements of H2S solubility in 33 ILs. The performed comprehensive error investigation revealed that the newly implemented paradigms yielded very satisfactory prediction performance. Besides, it was found that CMIS-GP provided more accurate estimations of H2S solubility in ILs compared with both the other intelligent models and the best-prior paradigms. In this regard, the developed CMIS-GP exhibited overall average absolute relative deviation (AARD) and coefficient of determination (R2) values of 2.3767% and 0.9990, respectively. Lastly, the trend analyses demonstrated that the tendencies of CMIS-GP predictions were in excellent accordance with the real variations of H2S solubility in ILs with respect to pressure and temperature
- «
- 1 (current)
- 2
- 3
- »
