Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
5 results
Search Results
Item Sensor Fault Detection in Uncertain Large-Scale Systems Using Interval-Valued PCA Technique(IEEE, 2025) Louifi, Abdelhalim; Kouadri, Abdelmalek; Harkat, Mohamed-FaouziPrincipal component analysis (PCA)-based fault detection and diagnosis (FDD) is a well-established, data- driven method that has shown remarkable performance. Despite the excellent reputation of the PCA, it is not an opti- mal solution, mainly due to the effect of system parameters’ uncertainties and imprecise measurements. These drasti- cally affect the decision-making concerning the operating state of the process. In this article, the data collected by different sensors are transformed from a single value to an interval value form by which errors and uncertainties in the measurements are quantified satisfactorily. Then, the process modeling based on the PCA technique has been duly performed for interval-valued. Afterward, the well-known fault detection statistics T 2 , Q, and 8 are obtained under an interval-valued representation. The developed technique is tested in the cement rotary kiln process. Its performance in terms of false and missed alarms and detection delay is compared with that of other techniques through an actual involuntary system fault and other different types of sensor faults. The obtained results show high superiority in detecting accurately and quickly distinct faults in a stochastic environment, including unknown and uncontrolled uncertainties. Consequently, the results have been reduced by more than 33%, 85%, and 45% for T 2 , Q, and 8, respectively, compared with the best results of the studied methods.Item Real-Time Fault Detection and Diagnosis Method for Industrial Chemical Tennessee Eastman Process(Institute of Electrical and Electronics Engineers Inc., 2024) Attouri, Khadija; Mansouri, Majdi; Hajji, Mansour; Kouadri, Abdelmalek; Bouzrara, Kais; Nounou, HazemThe accurate detection and diagnosis of faults are critical for maintaining optimal operation and ensuring the reliability of industrial processes. Notably, the topic of online fault detection and diagnosis has recently presented a significant challenge. This work mainly deploys a neural network technique for the comprehensive detection and diagnosis of faults within the Tennessee Eastman Process (TEP) on a low-computational power system, the Raspberry Pi board. The devolved methodology showcases a remarkable level of accuracy (94.50%) in diagnosing the various TEP faults, affirming its robustness and effectiveness. To elevate the practical applicability of the proposed approach, a meticulous investigation into the implementation of the suggested approach on a Raspberry Pi 4 card was undertaken. The successful realization of this implementation not only highlights the adaptability of the approach but also paves the way for its seamless integration into practical industrial applications.Item Real-Time Fault Detection Scheme for Industrial Chemical Tennessee Eastman Process(Institute of Electrical and Electronics Engineers Inc., 2024) Attouri, Khadija; Mansouri, Majdi; Hajji, Mansour; Kouadri, Abdelmalek; Bouzrara, Kais; Nounou, HazemThe key idea behind this study is to integrate a moving window dynamic PCA (MW-DPCA) methodology for fault detection within the Tennessee Eastman process (TEP) into a low-computational power system, the Raspberry Pi 4 card, for real-time application. Indeed, the paramount importance of real-time fault detection (FD) in intricate industrial processes presents a critical challenge. Various data-driven techniques have been developed to ensure safety, maintain operational stability, and optimize productivity in such processes. Principal Component Analysis (PCA) is a fundamental data-driven technique that utilizes dimensionality reduction to extract the most informative features from high-dimensional data, simplifying analysis and potentially revealing underlying fault patterns. However, PCA primarily focuses on static relationships and may miss crucial temporal dynamics for fault identification. This is where dynamic PCA (DPCA) excels. By incorporating lagged values of variables, DPCA captures the temporal evolution of features, enabling a more comprehensive understanding of process behavior and improving the detection of faults involving dynamic changes. In order to address the stochastic measurements, a moving average filter tool is also employed. The results obtained and the successful realization of this implementation demonstrate the adaptability of the approach and pave the way for its seamless integration into practical industrial applications.Item Dynamic Interval-Valued PCA for Enhanced Fault Detection(Institute of Electrical and Electronics Engineers Inc., 2024) Rouani, Lahcene Rouani; Harkat, Mohamed Faouzi Harkat; Kouadri, Abdelmalek Kouadri; Bensmail, Abderazak; Mansouri, Majdi; Nounou, MohamedThis study introduces three novel dynamic interval-valued principal component analysis (DIPCA) methods: dynamic centers PCA (D-CPCA), dynamic vertices PCA (D-VPCA), and dynamic complete information PCA (D-CIPCA). These methods advance traditional interval-valued PCA (IPCA) by integrating dynamic aspects of industrial processes, thus addressing both data uncertainties and temporal correlations. The DIPCA methods were validated using real-world data from the Ain El Kebira cement plant. Results indicate significant improvements in fault detection accuracy, achieving lower false alarm rates and higher reliability compared to classical IPCA methods. Furthermore, an enhanced combined index for interval-valued data was developed, providing a single, comprehensive statistical measure for streamlined process monitoring.Item Enhancing Fault Diagnosis of Uncertain Grid-Connected Photovoltaic Systems using Deep GRU-based Bayesian optimization(Elsevier B.V., 2024) Yahyaoui, Zahra; Hajji, Mansour; Mansouri, Majdi; Kouadri, Abdelmalek; Bouzrara, Kais; Nounou, HazemThe efficacy of photovoltaic systems is significantly impacted by electrical production losses attributed to faults. Ensuring the rapid and cost-effective restoration of system efficiency necessitates robust fault detection and diagnosis (FDD) procedures. This study introduces a novel interval-gated recurrent unit (I-GRU) based Bayesian optimization framework for FDD in grid-connected photovoltaic (GCPV) systems. The utilization of an interval-valued representation is proposed to address uncertainties inherent in the systems, the GRU is employed for fault classification, while the Bayesian algorithm optimizes its hyperparameters. Addressing uncertainties through the proposed approach enhances monitoring capabilities, mitigating computational and storage costs associated with sensor uncertainties. The effectiveness of the proposed approach for FDD in GCPV systems is demonstrated using experimental application.
