Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
4 results
Search Results
Item Effect of nanosilica-doped superplasticizer on the properties of cement mortars(STEF92 Technology, 2023) Safi, Brahim; Mechakra, Hamza; Saidi, Mohammed; Lecheb, SamirRecently, nanotechnology has attracted a considerable scientific interest due the potential new uses of non-particles, which can improve the properties of cement mortars or concretes, such as Nanosilica. Nanoparticles, like those of nanosilica, have been shown to have unique physical and chemical properties different from those of conventional cement additions. Nanosilica was used either to replace part of the cements or as an addition to improve the performance of the cement such as accelerating the hydration of the cement phases. This work investigates the effect of nanosilica adding to superplasticizer on fresh and hardened properties of cement mortars. For this, three superplasticizer types of three different firms doped with nanosilica (NS) at 1.5% wt. of superplasticizer (SP) to estimate the effect of nanosilica-based superplasticizer on the properties of cement mortars in the fresh and hardened state. An experimental study was conducted to evaluate the three SP based on NS on fresh and hardened properties. Our results show that nanosilica is compatible with the three superplasticizer, what is remarkable on the mortars in the fresh state, with a good workability which is between (24cm and 28cm) and a total absence of segregation which acts on the mechanical properties of the self-consolidating mortar in (3,7 and 28 days).Item Use of refractory bricks as sand replacement in self-compacting mortar(Taylor & Francis Online, 2017) Aboutaleb, Djamila; Safi, Brahim; Chahour, Kahina; Belaid, AmraneThis present work investigate the possibility of using refractory bricks (RB) as fine aggregates (by partial and total substitution of natural sand) in self-compacting mortars (SMCs). For this, an experimental study was carried out to evaluate physical and mechanical properties ((bulk density, compressive and flexural strength) of the self-compacting mortars (SCMs) with partial and total substitution of natural sand (NS) by crushed refractory bricks (RB) at different ratio (BR/S= 0, 10, 30, 50 et 100%) by weight. The results obtained show that the RB (0/5 mm class), can be used as fine aggregates for self-compacting mortar, without affecting the essential properties of mortar. However, the performances of RB-based mortar (100% as sand), were better and are suitable for a fluid concrete (such as self- compacting concrete)Item The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM)(Science Direct, 2015) Safi, Brahim; Saidi, Mohammed; Daoui, Abdelhakim; Bellal, Ahmed; Mechekak, Ali; Toumi, KamelItem Statistical modelling for effect of mix-parameters on properties of high-flowing sand-concrete(2012) Bouziani, T.; Benmounah, A.; Bédérina, M.The high-flowing sand-concrete (HFSC) containing natural sands as aggregate was carried out. The high fluidity and stability of HFSC can be achieved by tailoring the mix design parameters, such as fine to coarse sand ratio, dosage of additions, water to binder ratio and dosage of admixtures. Mini-cone slump test, v-funnel time test and viscosity model parameters were used to characterize the behaviour of HFSC in fresh state. The mechanical compressive strength in 28 d was also determined. A factorial design approach was used to establish models highlighting the effect of each mix-parameter on measured properties of HFSC. The derived models are valid for mixtures made with 0 to 0.3 of dune sand to total sand ratio, 82 to 418 kg/m3 of marble powder, 0.42 to 0.46 of water/binder ratio and 1.3% to 1.9% of superplasticizer high water-reducer. The results show that the derived models constitute very efficient means for understanding the influence of key mix-parameters on HFSC properties and are useful in selecting the optimum mix proportions, by simulating their impact on fluidity, stability and compressive strengt
