Publications Scientifiques
Permanent URI for this communityhttps://dspace.univ-boumerdes.dz/handle/123456789/10
Browse
3 results
Search Results
Item Maximizing enhanced oil recovery via oxidative cracking of crude oil: employing air injection and H2O2 with response surface methodology optimization(IOP publishing, 2024) Nouari, Omar; Hammadou née Mesdour, Souad; Boudjemaa, HamadaThe utilization of air injection as a method to enhance oil recovery in oil fields has gained prominence due to its cost-effectiveness and widespread availability, particularly in heavy oil production. This study focuses on optimizing the oxidative cracking process of Algerian crude oil by employing air injection supplemented with H2O2 and analyzing the interaction of key operating parameters like temperature and catalyst amount using response surface methodology. The predicted values derived from the response functions closely aligned with experimental data, demonstrating high accuracy (R2= 0.9727 for liquid oil, R2= 0.9176 for residue, and R2= 0.7399 for gas phases). Using the developed second-order model, optimal conditions were determined through contour and surface plots, as well as regression equation analysis using Design software. At these optimal parameters (14.78 wt% of H2O2, 2 l min−1 of air flow, 100 ml of crude oil at 354.05 °C for 40 min), the oxidative cracking process yielded 96.32% liquid oil, 3.018% residue, and 0.662% gas products. Notably, the experimental produced liquid oil constituted 96.07 vol. %, matching well with the optimization outcomes. Physicochemical analysis of liquid product phase obtained from oxidative cracking process of petroleum confirmed the prevalence of light aliphatic compounds(C2-C11) at 70.59%, alongside 29.41% of C12-C36. The process also resulted in reduced viscosity, density, refractive index, and sulfur content in the liquid phase. The combination of air injection and H2O2 showcases promise in recovering residual oil effectively and contributes to the ongoing advancements in EOR techniques.Item Development of a statistical model to predict methane production from waste activated sludge co-digested with olive mill wastewater and cattle dung by response surface methodology(2023) Maamri, Sarra; Moussa, Amrani; Yacine, MoussaouiNowadays, population growth is likely to lead to a wide variety of biomass wastes generation from the diversified human, industrial, and agricultural activities. Anaerobic digestion is mostly applied to manage biomass wastes and mitigate a huge spectrum of environmental damages. This paper aims to enhance the anaerobic digestion efficiency of multicomponent substrates, using a mixture of waste activated sludge (WAS), olive mill wastewater (OMW), and cattle manure (CM). A Response Surface Methodology is employed in experimental design to determine individual and interactive effects on methane yield and chemical oxygen demand reduction. After numerical optimization using Design Expert®, the opti- mum values of the test factors in actual were as follows: initial pH = 8, COD/N ratio = 47, 42, CM/WAS-OMW ratio = 0.352, TS = 42.94 g/L. The obtained results indi- cate that anaerobic co-digestion performance could be achieved by optimising substrate composition to assure a larger microbial synergistic effect.Item Optimization of carbon nanotubes synthesis via pyrolysis over Ni/Al2O3 using response surface methodology(Taylor and Francis Online, 2021) Boufades, Djamila; Hammadou Née Mesdour, Souad; Moussiden, Anissa; Benmebrouka, Hafsa; Medjahdi, Ghouti; Kaddour, OmarOwing to the rapid expansion of preparing a low-cost and pure carbon nanotubes (CNTs) from large available raw materials as cheap carbon precursors and catalyst depositions via chemical vapor deposition process, Algerian condensate gas over Ni/Al2O3 was used in this study. Response surface methodology was utilized to assess and optimize the preparation parameters. Synthesis of CNTs was studied as a function of three independent parameters: catalyst/condensate-gas weight ratio (5–10 wt %), synthesis time (30-120 min) and temperature (700–1000 C). Optimum conditions for the CNTS-synthesis were found to be 5%, 112 min and 1000 C, for catalyst/condensate gas mass ratio, synthesis time and temperature, respectively. Under these conditions, Raman spectrum indicates high values of (IG/ID), which means high-quality CNTs. Examination by SEM and HRTEM revealed that the CNTs grown under optimum conditions had diameters of 10nm. The carbon yield predicted at the optimum process conditions was 81.76%. Conclusively, the pure and uniformed CNTs can be produced with high yield by the conversion of available-cheap resources via CVD-method. This method is practical, realistic, feasible in industrial scale and thus can reduces the cost manufacture of CNTs, which may help increase the impact of these remarkable materials in many fields.
