Complete solutions of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential plus a trigonometric Scarf II potential
| dc.contributor.author | Kadja, A. | |
| dc.date.accessioned | 2024-06-24T09:26:26Z | |
| dc.date.available | 2024-06-24T09:26:26Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Under the condition of the spin symmetry, we rigorously solve the Dirac equation with the q − deformed hyperbolic Pöschl-Teller potential plus a trigonometric Scarf II potential. According to the values of the deformation parameter q, four different cases are considered. For the two cases q ≥ 1 and q ≤ − 1 with 1 2 α ln q < r < + ∞ , the analytical energy spectra and the spinor wave functions associated with the l d − wave bound states are obtained using a suitable approximation to the centrifugal potential term. When 0 < q < 1 or −1 < q < 0, the spinor wave functions for the s − wave bound states are derived and we find that the quantization conditions are transcendental equations which can be solved numerically. The special case q = 0 is also discussed. | en_US |
| dc.identifier.issn | 0031-8949 | |
| dc.identifier.uri | https://iopscience.iop.org/article/10.1088/1402-4896/ad5239 | |
| dc.identifier.uri | DOI 10.1088/1402-4896/ad5239 | |
| dc.identifier.uri | https://dspace.univ-boumerdes.dz/handle/123456789/14155 | |
| dc.language.iso | en | en_US |
| dc.publisher | IOP Publishing Ltd | en_US |
| dc.relation.ispartofseries | Physica Scripta/ Volume 99,N° 7( 2024) Art. N° 075405; | |
| dc.subject | Bound states | en_US |
| dc.subject | Dirac equation | en_US |
| dc.subject | Pöschl-Teller potential | en_US |
| dc.subject | Spin symmetry condition | en_US |
| dc.subject | Trigonometric Scarf II potential | en_US |
| dc.title | Complete solutions of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential plus a trigonometric Scarf II potential | en_US |
| dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
