Abnormal tissus extraction in MRI brain medical images

dc.contributor.authorCherifi, Dalila
dc.contributor.authorDoghmane, Mohamed Zinelabidine
dc.contributor.authorNait-Ali, A.
dc.contributor.authorAici, Zakia
dc.contributor.authorBouzelha, Salim
dc.date.accessioned2015-06-11T15:05:36Z
dc.date.available2015-06-11T15:05:36Z
dc.date.issued2011
dc.description.abstractThis study is a comparison between two image segmentation's methods; the first method is based on normal brain's tissue recognition then tumor extraction using thresholding method. The second method is classification based on EM segmentation which is used for both brain recognition and tumor extraction. The goal of these methods is to detect, segment, extract, classify and measure properties of the brain normal and abnormal (tumor) tissuesen_US
dc.identifier.citation7th International Workshop on Systems, Signal Processing and their Applications, WoSSPA 2011; Tipaza; Algeria; 9 May 2011 through 11 May 2011; Category numberCFP1133P-ART; Code 85750en_US
dc.identifier.isbn978-145770690-5
dc.identifier.urihttps://dspace.univ-boumerdes.dz123456789/1707
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries7th International Workshop on Systems, Signal Processing and their Applications, WoSSPA 2011 2011, Article number 5931510;pp. 357-360
dc.subjectbrain segmentationen_US
dc.subjectEM segmentationen_US
dc.subjectmagnetique resonance imagesen_US
dc.subjecttumor extractionen_US
dc.subjectMedical imagesen_US
dc.subjectThresholding methodsen_US
dc.subjecttumor extractionen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectMedical imagingen_US
dc.subjectSignal processingen_US
dc.subjectImage segmentationen_US
dc.titleAbnormal tissus extraction in MRI brain medical imagesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abnormal tissus extraction in MRI brain medical images.pdf
Size:
4.03 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections