Mechanical and damage properties of polyethylene reinforced with clay treatment

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Technology Publishing Group

Abstract

This document is the subject of an experimental study for composite material implementation with a polyethylene matrix (HDPE) embedded with clay particles. We carried out a chemical optimization applied to clay particles by characterizing the mechanical behavior as well as the damage of the elaborated composite material. The work is based on the following optimized procedure: a mixture of sodium thiosulfate (Na2S2O3) and clay cooled and centrifuged for 15 minutes. The clay pellet is rinsed twice with 0.05 M HCl for 3 to 4 hours. The mechanical properties of the composite material obtained are relative to the mass fraction of treated and untreated clay. The Young's modulus is found to change as the mass loadings of the injected treated clay change, with a marked improvement over virgin HDPE from 1590.90 to 1667.32 MPa, the yield strength from 28.68 to 31.73 MPa, and the ultimate tensile strength from 19.99 to 20.84 MPa. This positive variation is achieved at a maximum of 7% mass load of treated clay. Beyond this rate, the composite material experiences a drop in these same parameters due to the high concentration of clay. Scanning electron microscopy is used to see differences in dense microstructure between specimen granules

Description

Keywords

Clay particles, Chemical modifications, Mechanical properties, SEM

Citation

Endorsement

Review

Supplemented By

Referenced By