Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Grassl, Bruno"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications
    (Springer, 2019) Ghriga, Mohammed Abdelfetah; Grassl, Bruno; Gareche, Mourad; Khodja, Mohamed; Lebouachera, Seif El Islam; Andreu, Nathalie; Drouiche, Nadjib
  • No Thumbnail Available
    Item
    Thermal gelation of partially hydrolysed polyacrylamide/polyethylenimine mixtures using design of experiments approach
    (Elsevier, 2019) Ghriga, Mohammed Abdelfetah; Hasanzadeh, Mahdi; Gareche, Mourad; Lebouachera, Seif El Islam; Drouiche, Nadjib; Grassl, Bruno
    Polyethylenimine crosslinked polymer gels are gaining a huge interest in conformance control applications in oilfields. They are used to reduce the production of undesirable fluids (water & gas) by blocking the fractures that connect injection and production wells. In this paper, a statistical analysis on the thermal gelation of well characterized reactants namely partially hydrolysed polyacrylamide (PHPA) (Mw = 5.1 million Daltons and hydrolysis degree = 6%) and polyethylenimine (PEI) (Mw = 19.2 kilo Daltons and branching degree = 59%), was conducted using response surface methodology (RSM). A four factor doehlert matrix was employed in designing the experiments and evaluating the gelation time as function of salinity (0–8 g/L NaCl), polymer (PHPA) and crosslinker (PEI) concentrations, temperature (70 °C–90 °C) and their corresponding combinations. As a result, the gelation time was found to strongly vary with salinity, temperature and PHPA concentration following a nonlinear mathematical model. The analysis of variance (ANOVA) of this model revealed its significance in a 95% confidence level against experimental data. In a second part, an experimental investigation was carried out to understand the interaction between PHPA and PEI. To do so, the viscosity variations of analogue mixtures prepared with low molecular weight (Mw) polymers, such as polyacrylamide (PAM) and polyacrylic acid (PAA), were monitored using capillary viscometry at different conditions of temperature, pH and reaction time. The PAM/PEI mixtures showed a remarkable viscosity increase at typical pH of around 10 when cured at 80 °C. While, the PAA/PEI mixtures underwent precipitation at pH of around 6 revealing the strong interaction between PAA and PEI at this condition

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify