Publications Internationales
Permanent URI for this collectionhttps://dspace.univ-boumerdes.dz/handle/123456789/13
Browse
32 results
Search Results
Item Relationship between structural and mechanical properties of polyethylene matrix nanocomposites(Faculty of Engineering, Khon Kaen University, 2024) Rahmaoui, Fath Eddine Zakaria; Belaidi, IdirThis study examined the impact of incorporating graphene nanoplatelets (GnP) into high-density polyethylene (PE) to create nanocomposites, with and without a compatibiliser. We specifically focused on the impact of structural crystallinity on the mechanical properties of the nanocomposites. These nanocomposites exhibited a much higher Young's modulus compared with pure PE. Specifically, the Young’s modulus increased exponentially with the addition of a compatibiliser and linearly without it. One explanation for this exponential rise in Young's modulus is that the crystal's compacted polymer chain structure improved its stiffness, facilitating effective load transfer. Additionally, a poor distribution of GnP in the nanocomposites with a filler content of 0.5 and 1 wt.%, both with and without a compatibiliser, led to a decreased stress and strain at break. However, at higher filler contents, well-distributed GnP play a key role in enhancing stress and strain at break.Item A review of emulsion flows, their characterization and their modeling in pumps(Institution of Chemical Engineers, 2024) Achour, Lila; Specklin, Mathieu; Asuaje, Miguel; Kouidri, Smaine; Belaidi, IdirIn the engineering field, emulsions and liquid–liquid two-phase flows within centrifugal pumps are generally unwanted as emulsions will have negative effects on pump operation. Besides, emulsions are usually formed when the oil and water phases are brought together in a process called emulsification, which is enhanced by high shear rates. This topic has been extensively researched over the past decades, with sophisticated theories regarding the phenomena involved in emulsions formation and characterization in pumps. Besides, given the complexity of the physics governing emulsions, studies on their modeling within pumps, based on empirical correlations or computational fluid dynamics models, are insufficient and remain limited. This review aims to provide a complete overview of investigations on liquid–liquid flow in centrifugal pumps. Characteristics of these mixtures, such as stability, phase inversion, droplet size distribution and rheological behavior, are discussed. Current approaches and techniques for analyzing pump performance handling emulsion and two-phase liquid–liquid flow are reviewed thoroughly. The limitations of the existing models are studied, and potential future developments are proposed.Item Prediction of the peak load and absorbed energy of dynamic brittle fracture using an improved artificial neural network(Elsevier, 2022) Oulad Brahim, Abdelmoumin; Belaidi, Idir; Fahem, Noureddine; Khatir, Samir; Mirjalili, Seyedali Jamal; Abdel Wahab, Magd M.In this paper, a robust technique is presented to predict the peak load and crack initiation energy of dynamic brittle fracture in X70 steel pipes using an improved artificial neural network (IANN). The main objective is to investigate the behaviour of API X70 steel based on two experimental tests, namely Drop Weight Tear Test (DWTT) and the Charpy V-notch impact (CVN), for steel pipe specimens. The mechanical properties in the brittle fracture behaviour of API X70 steel pipes are predicted utilizing numerical approaches with different crack lengths. Next, to simulate the impact of API X70 steel pipes at lower temperatures through a numerical approach, a cohesive approach using the extended Finite Element Method (XFEM) is used. The data obtained are used as input for the proposed IANN using Balancing Composite Motion Optimization (BCMO), Particle Swarm Optimization (PSO) and Jaya optimization algorithms, to predict the peak load values and crack initiation energy of dynamic brittle fractures in API X70 steel with different crack lengths. The results show the effectiveness of ANN-PSO and ANN-BCMO based on the convergence of the results and the accuracy of the prediction of the peak load and crack initiation energy.Item A new methodology to predict the sequence of GFRP layers using machine learning and JAYA algorithm(Elsevier, 2023) Fahem, Noureddine; Belaidi, Idir; Oulad Brahim, Abdelmoumin; Capozucca, Roberto; Thanh, Cuong Le; Khatir, Samir; Abdel Wahab, Magd M.In this paper, the best stacking sequence using experimental tests of GFRP composites is investigated. The main objective of this work is to determine the main specification of GFRP composite material, which is represented by its physics-mechanical properties, weight, and cost, before performing a series of experimental tests based on various stacking sequences. Our methodology is divided into three stages. The first stage is characterized by extracting the bending data from mechanical tests of some GFRP composites. In the second stage, the validated numerical model is used to simulate numerous cases of stacking sequences. In the last stage, the extracted data is used to determine the parameters for different stacking sequences using an inverse technique based on ANN and JAYA algorithm. The results provide a good prediction of parameters as well as a good orientation to make decisions on the best GFRP stacking sequence to be used, according to the required specifications of the manufacturer.Item A reduced-order method with PGD for the analysis of dynamically loaded journal bearing(2022) Megdoud, Abdelhak; Manser, Belkacem; Belaidi, Idir; Bakir, Farid; Khelladi, SofianeMachine component design has become a prominent topic for researchers in recent years. The analysis of bearing systems has received considerable attention in order to avoid detrimental contact. Among the most important studies in this area are the transient problems of journal bearings, which are usually performed by coupling the Reynolds equation with the motion equations. Many techniques have been presented in the literature and are still being explored to ensure the accurate findings and efficient solution prediction of unsteady state Reynolds equation. In this paper, the Proper Generalized Decomposition (PGD) approach is expanded for the analysis of the lubricant behavior of dynamically loaded journal bearing considering Swift-Stieber boundary conditions. The PGD model is applied in this problem, seeking the approximate solution in its separated form of the partial differential Reynolds equation at each time step during the load applied cycle employing the alternating direction strategy. Compared to the classical resolution, the PGD solution has a considerably low computational cost. To verify the accuracy and efficiency of this approach, three cases have been considered, infinitely short, infinitely long and finite journal bearings under the dynamic load. The results of the suggested methodology when compared to the full discretized model (FDM) show that, the new scheme is more efficient, converges quickly, and gives the accurate solutions with a very low CPU time consumption.Item Towards an accurate aerodynamic performance analysis methodology of Cross-Flow fans(MDPI, 2022) Himeur, Rania Majda; Khelladi, Sofiane; Ait Chikh, Mohamed Abdessamad; Vanaei, Hamid Reza; Belaidi, Idir; Bakir, FaridCross-flow fans (CFFs) have become increasingly popular in recent years. This is due to their use in several domains such as air conditioning and aircraft propulsion. They also show their utility in the ventilation system of hybrid electric cars. Their high efficiency and performance significantly rely on the design parameters. Up to now, there is no general approach that predicts the CFFs’ performance. This work describes a new methodology that helps deduce the performance of CFFs in turbomachinery, using both analytical modeling and experimental data. Two different loss models are detailed and compared to determine the performance–pressure curves of this type of fan. The efficiency evaluation is achieved by realizing a multidisciplinary study, computational fluid dynamics (CFD) simulations, and an optimization algorithm combined to explore the internal flow field and obtain additional information about the eccentric vortex, to finally obtain the ultimate formulation of the Eck/Laing CFF efficiency, which is validated by the experimental results with good agreement. This approach can be an efficient tool to speed up the cross-flow fans’ design cycle and to predict their global performanceItem Experimental and numerical evaluation of Quasi-Static Indentation behaviour of laminates with polypropylene matrix(Polish Society of Composite Materials, 2021) Mahdad, M'Hamed; Benidir, Adel; Belaidi, IdirThis paper presents an analysis of the damage process of composite laminates subjected to low-velocity quasi-static indentation (QSI) load. The laminates were prepared using the compression moulding technique. The composites were made from orthotropic layers with E-glass or steel fibres and a polypropylene matrix. The quasi-static indentation tests were carried out at three levels of indentation energy under low-velocity. The experimental results reveal that using steel fibres increases the perforation threshold, which alludes to the importance of the fibre type in delineating damage regions. In contrast, the evolution of the damage and the perforation resistance of glass fibre reinforced laminates is somewhat different. A numerical model based on a finite element program was developed to understand the mechanisms of damage evolution in the laminates. It in-volves implementing the Matzenmiller-Lubliner-Taylor (MLT) damage model. A comparison between the experimental and numerical results was also madeItem Numerical assessment of the hydrodynamic behavior of a volute centrifugal pump handling emulsion(MDPI, 2022) Achour, Lila; Specklin, Mathieu; Belaidi, Idir; Kouidri, SmaineAlthough emulsion pumping is a subject of growing interest, a detailed analysis of the fluid dynamic phenomena occurring inside these machines is still lacking. Several computational investigations have been conducted to study centrifugal pumps carrying emulsion by analyzing their overall performance, but no studies involved the rheological behavior of such fluids. The purpose of this study is to perform a computational analysis of the performance and flow characteristics of a centrifugal pump with volute handling emulsions and oil–water mixtures at different water cuts modeled as a shear-thinning non-Newtonian fluid. The studied pump consists of a five-bladed backward curved impeller and a volute and has a specific speed of 32 (metric units). The rheological properties of the mixtures studied were measured experimentally under a shear rate ranging from 1 s−1 to 3000 s−1 and were fitted to conventional Cross and Carreau effective viscosity models. Numerical results showed the flow topology in the pump is directly related to the viscosity plateau of the pseudoplastic behavior of emulsions. The viscosity plateau governs pump performance by influencing the loss mechanisms that occur within the pump. The larger the ν∞, the less recirculation loss the fluid experiences, and conversely, the smaller the value of ν0, the less friction loss the fluid experiencesItem Sensitivity analysis of the gtn damage parameters at different temperature for dynamic fracture propagation in x70 pipeline steel using neural network(Gruppo Italiano Frattura, 2021) Abdelmoumin Ouladbrahim, Abdelmoumin; Belaidi, Idir; Khatir, Samir; Magagnini, Erica; Capozucca, Roberto; Wahab, Magd AbdelIn this paper, the initial and maximum load was studied using the Finite Element Modeling (FEM) analysis during impact testing (CVN) of pipeline X70 steel. The Gurson-Tvergaard-Needleman (GTN) constitutive model has been used to simulate the growth of voids during deformation of pipeline steel at different temperatures. FEM simulations results used to study the sensitivity of the initial and maximum load with GTN parameters values proposed and the variation of temperatures. Finally, the applied artificial neural network (ANN) is used to predict the initial and maximum load for a given set of damage parameters X70 steel at different temperatures, based on the results obtained, the neural network is able to provide a satisfactory approximation of the load initiation and load maximum in impact testing of X70 SteelItem Development of an advanced MES for the simulation and optimization of industry 4.0 process(EDP Sciences, 2021) Benfriha, Khaled; El-Zant, Chawki; Charrier, Quentin; Bouzid, Abdel-Hakim; Wardle, Peter; Belaidi, Idir; Loubère, Stéphane; Ghodsian, Nooshin; Aoussat, AmézianeThe concept of Industry 4.0 has been developed a lot from a theoretical point of view. However, the real applications on production lines remain few in number, due to the difficulties of interoperability between the different production entities and also due to the lack of a control system adapted to the expected flexibility and to the management of the data generated. This article focuses on the development and deployment of a manufacturing execution system (MES) on a production system 4.0. The development stages of the system are explained in detail. The new functionalities and the expected level of performance impose a new logic in the design of advanced systems for controlling and optimizing production. Finally, a proof of concept of an MES was developed and tested on a new technology platform 4.0
