On The Block Decomposition and Spectral Factors of λ -Matrices

dc.contributor.authorBekhiti, Belkacem
dc.contributor.authorDahimene, Abdelhakim
dc.contributor.authorHariche, Kamel
dc.contributor.authorFragulis, George F.
dc.date.accessioned2020-12-17T07:18:58Z
dc.date.available2020-12-17T07:18:58Z
dc.date.issued2018
dc.description.abstractIn this paper we factorize matrix polynomials into a complete set of spectral factors using a new design algorithm and we provide a complete set of block roots (solvents). The procedure is an extension of the (scalar) Horner method for the computation of the block roots of matrix polynomials. The Block-Horner method brings an iterative nature, faster convergence, nested programmable scheme, needless of any prior knowledge of the matrix polynomial. In order to avoid the initial guess method we proposed a combination of two computational procedures. First we start giving the right Block-QD (Quotient Difference) algorithm for spectral decomposition and matrix polynomial factorization. Then the construction of new block Horner algorithm for extracting the complete set of spectral factors is given.en_US
dc.identifier.issn03248569
dc.identifier.urihttps://arxiv.org/abs/1803.10557
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/5940
dc.publisherArxiven_US
dc.relation.ispartofseriesControl and Cybernetics, 49(1);pp. 41-76
dc.subjectBlock rootsen_US
dc.subjectSolventsen_US
dc.subjectSpectral factorsen_US
dc.subjectBlock-Q.Den_US
dc.subjectalgorithmen_US
dc.subjectBlock-Horner’s algorithmen_US
dc.subjectMatrix polynomialen_US
dc.titleOn The Block Decomposition and Spectral Factors of λ -Matricesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1803.10557.pdf
Size:
575.79 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: