Existence of solution and qualitative behavior for a class of heat equations

dc.contributor.authorAlves, Claudianor O.
dc.contributor.authorBoudjeriou, Tahir
dc.contributor.authorPrado, Humberto
dc.date.accessioned2024-10-23T13:08:13Z
dc.date.available2024-10-23T13:08:13Z
dc.date.issued2024
dc.description.abstractThe objective of this paper is to investigate the existence of solutions and their qualitative behavior for a given class of nonlinear evolutionary equations. We demonstrate that the pseudo-differential operator Δexp⁡(−cΔ) acts as the infinitesimal generator of the solution operator. Here, Δ denotes the Euclidean Laplace operator, and c is a positive constant. We establish the appropriate domain for the operator Δexp⁡(−cΔ) and prove that it generates a C0 semigroup on L2(RN). Additionally, we introduce a scale of spaces wherein smooth solutions exist, and these spaces are continuously embedded into the Sobolev class. Finally, we investigate the nonlinear evolution problem for a broad class of nonlinearities.en_US
dc.identifier.issn0022-0396
dc.identifier.issnhttps://www.sciencedirect.com/science/article/abs/pii/S0022039624002456?via%3Dihub
dc.identifier.issnhttps://doi.org/10.1016/j.jde.2024.04.019
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/14512
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesJournal of Differential Equations/Vol. 400(2024);pp. 457 - 486
dc.subjectAsymptotic behavior of solutionsen_US
dc.subjectBlowing up solutionsen_US
dc.subjectBosonic heat equationsen_US
dc.subjectGlobal existenceen_US
dc.titleExistence of solution and qualitative behavior for a class of heat equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Existence of solution and qualitative behavior for a class of heat equations.pdf
Size:
390.98 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: