Lp-theory for elliptic systems without divergence constraint and with Navier-type boundary condition

dc.contributor.authorBoukassa, Saliha
dc.contributor.authorAmrouche, Chérif
dc.date.accessioned2024-03-10T08:05:33Z
dc.date.available2024-03-10T08:05:33Z
dc.date.issued2024
dc.description.abstractIn this paper, we study a linear elliptic system involving Navier-type boundary conditions or tangential components in a three-dimensional bounded domain, possibly multiply connected and with boundary possibly nonconnected. We establish an appropriate Inf-Sup condition and then we prove the existence and uniqueness of the generalized solutions in (Formula presented.) -theory. We also investigate the case of strong solutions.en_US
dc.identifier.issn0170-4214
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/mma.9893
dc.identifier.urihttps://doi.org/10.1002/mma.9893
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/13668
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofseriesMathematical Methods in the Applied Sciences(2024);
dc.subjectElliptic problemen_US
dc.subjectInf-Sup conditionen_US
dc.subjectLp-theoryen_US
dc.subjectNavier-type boundary conditionen_US
dc.titleLp-theory for elliptic systems without divergence constraint and with Navier-type boundary conditionen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: