A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones
| dc.contributor.author | Bakdi, Azzeddine | |
| dc.contributor.author | Kouadri, Abdelmalek | |
| dc.contributor.author | Mekhilef, Saad | |
| dc.date.accessioned | 2019-02-12T08:31:36Z | |
| dc.date.available | 2019-02-12T08:31:36Z | |
| dc.date.issued | 2019 | |
| dc.identifier.issn | 1364-0321 | |
| dc.identifier.uri | https://dspace.univ-boumerdes.dz/handle/123456789/5395 | |
| dc.identifier.uri | https://doi.org/10.1016/j.rser.2019.01.013 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartofseries | Renewable and Sustainable Energy Reviews/ Vol.103 (2019);pp. 546-555 | |
| dc.subject | Wind turbine benchmark | en_US |
| dc.subject | Data-driven fault detection | en_US |
| dc.subject | Drivetrain vibration | en_US |
| dc.subject | Hydraulic blade pitch fault | en_US |
| dc.subject | Speed/position sensor fault | en_US |
| dc.subject | Pump/torque controller fault | en_US |
| dc.title | A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones | en_US |
| dc.type | Article | en_US |
