Study of nanofluids cavitating flow through a venturi using computational fluid dynamics code

Thumbnail Image

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this work, we conducted a numerical study of cavitating nanofluid flow through a Venturi. The objective is to investigate the influence of nanoparticles in the base fluid on the cavitation phenomenon. The computational fluid dynamics code (CFD) was selected with a cavitation model. The mixture model for multiphase flow and the k-ω SST turbulence model were adopted. Three fluids were chosen: water, Cu/water and TiO2/water with different volume franctions of nanoparticle (0%, 10% 20%, 30%) . The simulation was conducted with inlet and outlet pressures set at 700 kPa and atmosphere pressure respectively. The numerical results are compared with the previous experimental and numerical data for flow without nanoparticle. The obtained results found that, the presence of the nanoparticles in the base fluid lead to a slight increase in the static pressure, the position of pressure recovery a significant decrease in fluid velocity and an increase in the vapor fraction formation in the flow. Also, the increase of the nanoparticle volume fractions φ results a decrease in the pressure recovery position, fluid velocity and an increase in the vapor fraction formation. Therefore, the presence of nanoparticles in the base fluid promotes the phenomenon of cavitation.

Description

Keywords

Hydrodynamic cavitation., Venturi, Vapor, CFD, Nanofluid

Citation

Endorsement

Review

Supplemented By

Referenced By