Gear fault detection, identification and classification using MLP neural network

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Gear fault detection, identification and classification are highly complicated tasks, as the faults which affect gearboxes tend to share similar frequency signatures. Therefore, load and speed changes in a rotating machinery inevitably provide inaccurate results. However, identifying the fault remains critical, as each individual gear fault influences overall mechanism operation in different manners. Therefore, defect identification and classification appear as the hardest challenge for a geared systems. An automatic method to detect, identify and classify different gear failures is presented in this paper. The intelligent approach consists of a combination of MODWPT, entropy and MLPNN. MODWPT was developed to decompose the signals with a uniform frequency bandwidth. Entropy is employed to build the feature matrix in the feature extraction phase. Then, MLP offers a very efficient classification tool for features classification stage. Based on data sets taken from a gearbox bench test with a good and five varied gear states under various loads and speeds, experimental results presented the efficiency of our technique

Description

Keywords

Defect, Entropy indicator, Gear, MLP, MODWPT

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By