Texture Characterization of Bone Radiograph Images. Application to Osteoporosis Diagnosis

dc.contributor.authorHarrar, Khaled
dc.date.accessioned2015-09-30T10:22:18Z
dc.date.available2015-09-30T10:22:18Z
dc.date.issued2014
dc.description.abstractThe objective of this paper is to identify osteoporotic cases from healthy controls on 2D bone radiograph images, using texture analysis. Taking into account the piecewise fractal nature of bone radiograph images, an appropriate fractal model is used to characterize the trabecular bone network. A piecewise Whittle estimator for calculating the Hurst exponent H is used to better consider the piecewise fractal nature of the data. The Support vector Machine (SVM) are used as classifier to discriminate the two populations. A total of 116 training and test images are used. The k-fold Cross-validation method is used to validate the results of the classificationen_US
dc.identifier.issn0018-9219
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/2263
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesInternational Symposium on Biomedical Imaging (IEEE-ISBI Challenge 2014), Beijing, China.;05/2014;PP. 1-4
dc.subjectTexture Characterizationen_US
dc.subjectone Radiograph Imagesen_US
dc.subjectOsteoporosis Diagnosisen_US
dc.titleTexture Characterization of Bone Radiograph Images. Application to Osteoporosis Diagnosisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Texture Characterization of Bone Radiograph Images. Application to Osteoporosis Diagnosis.pdf
Size:
89.66 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: