A modified Kullback divergence for direct fault detection in large scale systems
| dc.contributor.author | Hamadouche, Anis | |
| dc.contributor.author | Kouadri, Abdelmalek | |
| dc.contributor.author | Bakdi, Azzeddine | |
| dc.date.accessioned | 2018-02-18T10:15:04Z | |
| dc.date.available | 2018-02-18T10:15:04Z | |
| dc.date.issued | 2017 | |
| dc.identifier.issn | 0959-1524 | |
| dc.identifier.uri | https://dspace.univ-boumerdes.dz/handle/123456789/4533 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartofseries | Journal of Process Control/ Vol.59 (2017);pp. 28-36 | |
| dc.subject | FDI | en_US |
| dc.subject | Change-point detection | en_US |
| dc.subject | Kernel methods | en_US |
| dc.subject | Density ratio | en_US |
| dc.subject | Kullback–Leibler | en_US |
| dc.subject | Tennessee Eastman process | en_US |
| dc.subject | Machine learning | en_US |
| dc.title | A modified Kullback divergence for direct fault detection in large scale systems | en_US |
| dc.type | Article | en_US |
