Dynamic eccentricity fault diagnosis in induction motors using finite element method and experimental tests
No Thumbnail Available
Files
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Inder Science Online
Abstract
This paper presents the dynamic eccentricity (DE) in the squirrel cage induction machine obtained by the simulation using finite element method (FEM) and the experimental tests. Motor current signature analysis (MCSA) through the power spectral density (PSD) is used to monitor the low frequency components related to the rotor faults. In order to generalise the study, a comparison was performed between faulty machines and healthy, under different load conditions. The experimental tests show the encountered difficulties in the detection of the dynamic eccentricity under various load conditions because the spectral representation shows the existence of low frequency components for the healthy case, which are superimposed with the indicator components. These low frequency components offer an alternative way to the monitoring of eccentricity air-gap when the load is balanced
Description
Keywords
Finite element method, FEM, Dynamic eccentricity
