Process Parameters and Intensification Effects of a Microwave Exposure Applied for the Extractive Oxidation of Diesel: An Optimization Using Response Surface Methodology

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Pleiades Publishing

Abstract

Extractive oxidation of diesel via microwave processing using sulfuric acid and two synthesized pyridinium- or methylpyridinium-based ionic liquids has been studied as a sustainable and clean technology. The Central Composite Design (CCD) representing one of the response surface methods was applied for the experimental design, mathematical modeling, optimization, and factor-influence study, which covered the 0.75–1.75 [CH2COOHmPy][HSO4]/[H2SO4] volumetric range, 40–80°C temperature range, and 120–300 s radiation exposure time. The developed model properly fitted experimental results, with a coefficient of determination (R2) equal to 0.9832 that indicated its accuracy. The highest predicted sulfur removal (93.338%) as well as a significant removal of nitrogen and aromatic compounds was obtained for [CH2COOHmPy][HSO4]/[H2SO4] = 1.57, T = 71.7°C, and exposure time equal to 208 s. Microwave-assisted extractive oxidation demonstrated a considerable potential as the energy-saving technology, which meets the future need for producing clean fuels with low content of heteroatoms and polyaromatic hydrocarbons.

Description

Keywords

Clean fuel, Extractive oxidation, Microwave radiation, Pyridinium-based ionic liquids, RSM optimization

Citation

Endorsement

Review

Supplemented By

Referenced By