Multi-class EEG signal classification for epileptic seizure diagnosis

dc.contributor.authorCherifi, Dalila
dc.contributor.authorAfoun, Laid
dc.contributor.authorIloul, Zakaria
dc.contributor.authorBoukerma, Billal
dc.contributor.authorAdjerid, Chaouki
dc.contributor.authorBoubchir, Larbi
dc.contributor.authorNait-Ali, Amine
dc.date.accessioned2021-01-25T12:31:42Z
dc.date.available2021-01-25T12:31:42Z
dc.date.issued2020
dc.description.abstractEEG signal recordings are increasingly replacing the old methods of diagnosis in medical field of many neurological disorders. Our contribution in this article is the study and development of EEG signal classification algorithms for epilepsy diagnosis using one rhythm; for classification, an optimum classifier is proposed with only when used one rhythm so that both execution time and number of features are reduced. We used wavelet packet decomposition (WPD) to extract the five rhythms of brain activity from the public Epilepsy-EEG recordings in order to represent each signal with features vector; then we applied on it the well-known classification methods. A statistical study is done to validate the different algorithmsen_US
dc.identifier.otherDOI: 10.1007/978-3-030-63846-7_60
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-63846-7_60
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/6223
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesInternational Conference in Artificial Intelligence in Renewable Energetic Systems/ (2020);pp. 635-645
dc.subjectEEGen_US
dc.subjectWavelet packet decompositionen_US
dc.subjectFeatures extractionen_US
dc.subjectEpilepsy diagnosisen_US
dc.titleMulti-class EEG signal classification for epileptic seizure diagnosisen_US
dc.typeOtheren_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Cherifi D..pdf
Size:
592.52 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: