Diabetic retinopathy grading using deep neural networks

dc.contributor.authorTemmam, Amira
dc.contributor.authorAhmed Gaid, Chaima
dc.contributor.authorDaamouche, Abdelhamid (Supervisor)
dc.date.accessioned2024-01-17T07:05:11Z
dc.date.available2024-01-17T07:05:11Z
dc.date.issued2023
dc.description82p.en_US
dc.description.abstractDiabetic Retinopathy (DR) is a chronic disease and the leading cause of blindness and visual impairment among diabetic patients making early detection and classificatio nof DR crucial for effectiv etreatment .Thi sprojec tutilize sstate-of-the-ar tconvolutiona lneu- ral networks and transfer learning techniques to analyze retinal images and classify the severity of the disease on a scale of 0 to 4 (ranging from healthy to proliferative). We employ architectures such as EfficientNetB 1,InceptionV 3,Xceptio n,a ndMobileNet V2to achieve accurate classification .Throug h aserie so fexperiment san devaluations ,ou rsys- tem achieves an overall accuracy of 80.0% in classifying DR images. The results showcase the significan tpotentia lo fdee plearnin gi nassistin ghealthcar eprofessional swit hearly diagnosis and treatment planning, thereby improving patient well-being.en_US
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/12891
dc.language.isoenen_US
dc.publisherUniversité M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique
dc.subjectDeep learningen_US
dc.subjectDiabetic retinopathy gradingen_US
dc.titleDiabetic retinopathy grading using deep neural networksen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Final report.pdf
Size:
6.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections