Diabetic retinopathy grading using deep neural networks
| dc.contributor.author | Temmam, Amira | |
| dc.contributor.author | Ahmed Gaid, Chaima | |
| dc.contributor.author | Daamouche, Abdelhamid (Supervisor) | |
| dc.date.accessioned | 2024-01-17T07:05:11Z | |
| dc.date.available | 2024-01-17T07:05:11Z | |
| dc.date.issued | 2023 | |
| dc.description | 82p. | en_US |
| dc.description.abstract | Diabetic Retinopathy (DR) is a chronic disease and the leading cause of blindness and visual impairment among diabetic patients making early detection and classificatio nof DR crucial for effectiv etreatment .Thi sprojec tutilize sstate-of-the-ar tconvolutiona lneu- ral networks and transfer learning techniques to analyze retinal images and classify the severity of the disease on a scale of 0 to 4 (ranging from healthy to proliferative). We employ architectures such as EfficientNetB 1,InceptionV 3,Xceptio n,a ndMobileNet V2to achieve accurate classification .Throug h aserie so fexperiment san devaluations ,ou rsys- tem achieves an overall accuracy of 80.0% in classifying DR images. The results showcase the significan tpotentia lo fdee plearnin gi nassistin ghealthcar eprofessional swit hearly diagnosis and treatment planning, thereby improving patient well-being. | en_US |
| dc.identifier.uri | https://dspace.univ-boumerdes.dz/handle/123456789/12891 | |
| dc.language.iso | en | en_US |
| dc.publisher | Université M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique | |
| dc.subject | Deep learning | en_US |
| dc.subject | Diabetic retinopathy grading | en_US |
| dc.title | Diabetic retinopathy grading using deep neural networks | en_US |
| dc.type | Thesis | en_US |
