Notch depth identification in CFRP composite beams based on modal analysis using artificial neural network

dc.contributor.authorZara, A.
dc.contributor.authorBelaidi, I.
dc.contributor.authorOulad Brahim, A.
dc.contributor.authorKhatir, S.
dc.contributor.authorCapozucca, R.
dc.contributor.authorAbdel Wahab, M.
dc.date.accessioned2023-04-03T09:44:15Z
dc.date.available2023-04-03T09:44:15Z
dc.date.issued2023
dc.description.abstractRecently, the development of optimization techniques based on artificial neural network (ANN) has shown considerable progress in the field of damage identification in composite structures, due to their simplicity, greater precision, and lower computational time compared to non-destructive testing methods (NDT). In our work, a finite element model is developed using ABAQUS software to validate the vibratory behaviors of experimental tests. Then, based on digital data extracted from a calibrated model of the damaged CFRP cantilever specimens, we used a novel artificial neural network approach to detect and identify notch depth in carbon fiber reinforced polymer (CFRP) beam based on modal analysis. The results show that ANN based on natural frequencies can be used to identify notch depth with good accuracy in composite structuresen_US
dc.identifier.isbn978-981194834-3
dc.identifier.issn21954356
dc.identifier.uriDOI 10.1007/978-981-19-4835-0_7
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-981-19-4835-0_7
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/11270
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesLecture Notes in Mechanical Engineering (2023);pp. 101-112
dc.subjectArtificial neural networks (ANN)en_US
dc.subjectCarbon fiber reinforced polymer (CFRP)en_US
dc.subjectFEMen_US
dc.subjectNotch depth identificationen_US
dc.titleNotch depth identification in CFRP composite beams based on modal analysis using artificial neural networken_US
dc.typeOtheren_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: