On approximate controllability of impulsive fractional semilinear systems with deviated argument in hilbert spaces

dc.contributor.authorAimene, Djihad
dc.date.accessioned2021-04-05T11:29:27Z
dc.date.available2021-04-05T11:29:27Z
dc.date.issued2020
dc.description.abstractIn this paper we apply a fixed-point theorem to study the existence and uniqueness of a mild solution and the approximate controllability of a fractional order impulsive differential equation with deviated argument in Hilbert spaces. An example is provided to show the effectiveness of the theoryen_US
dc.identifier.issn15628353
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/6763
dc.language.isoenen_US
dc.publisherInforMath Publishing Groupen_US
dc.relation.ispartofseriesNonlinear Dynamics and Systems Theory Volume 20, Issue 5, 2020;pp. 465-478
dc.subjectControllabilityen_US
dc.subjectDeviated argumentsen_US
dc.subjectDifferential equations with impulsesen_US
dc.subjectFixed-point theoremsen_US
dc.subjectFractional derivatives and integralsen_US
dc.subjectSemigroup theoryen_US
dc.titleOn approximate controllability of impulsive fractional semilinear systems with deviated argument in hilbert spacesen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: