Publications Internationales

Permanent URI for this collectionhttps://dspace.univ-boumerdes.dz/handle/123456789/13

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A comprehensive numerical study on melting performance in a storage cavity with partial metal foam integration: Design and economic assessment
    (Elsevier, 2024) Cheradi, Hanane; Haddad, Zoubida; Iachachene, Farida; Mansouri, Kacem; Arıcı, Müslüm
    Despite remarkable technological progress aimed at improving thermal performance of storage systems, designing cost-effective thermal storage solutions still remains a challenge. Consequently, to address this gap, the current study provides a detailed numerical analysis of the melting performance within a storage cavity with partial metal foam integration, considering both design and economic aspects. Five distinct designs were considered to provide a comprehensive assessment of the melting process including non-porous and porous designs. Various factors such as foam position, foam shape and foam filling ratio were examined under different criteria. The results revealed that designs employing kite-shaped, triangular-shaped, square-shaped, and trapezoidal-shaped foam under optimal location resulted in melting time reduction of 74.8 %, 67.0 %, 50.9 %, and 42.8 %, respectively, in comparison to the non-porous design. The findings highlight the kit-shaped foam as the optimal foam shape, with a notable 7.8 % difference in melting times between designs with kite and triangular foams, and an 8.1 % disparity between designs with square and trapezoidal foams. From an economic assessment, it was found that the kit-shaped foam filling design, with a 1/3 filling ratio, proved to be cost-effective when the unit price ratio of the metal foam to PCM fell within the range of 4 to 12. Interestingly, for ratios below 4, the same design, with a 1/2 filling ratio, emerged as an economical solution. This study contributes to the field by providing quantitative insights into the design and economic viability of metal foam integrated thermal storage systems.
  • Item
    Numerical investigation of wax deposition features in a pipeline under laminar flow conditions
    (Elsevier, 2022) Boucetta, Rachid; Haddad, Zoubida; Zamoum, Mohammed; Kessal, Mohand; Arıcı, Müslüm
    Wax deposit inside pipelines continues to be a critical issue in the oil and gas industry. The available wax deposition data in the literature are currently insufficient to construct viable predictive numerical methods that capture all wax deposit features. Therefore, more research studies are required to improve our understanding of the physics of wax-deposition phenomena. In the present paper, a numerical study is performed to predict the temporal and spatial distribution of the porous wax deposit during laminar flow in a pipe. A mathematical model which combines the energy and momentum balance equations and molecular diffusion model by Fick's law is employed to better describe the wax deposit. Validation with experimental data as well as numerical results and characteristics of wax deposition are presented. The results revealed that an increase in the deposition time and porosity leads to a significant increase in the wax deposit content and pressure drop, and a decrease in the fluid temperature, heat transfer coefficient, and flow rate. However, an increase in porosity leads to larger variation of these parameters over a short period of time. Further, it is demonstrated that the wax deposit is concentrated over a short axial length, and its maximum which appears at X/L = 0.014 is kept unchanged with time and porosity variation